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the commutator of x, y 
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the multiplicative group of units of the ring R 
polynomials in x, and in xr, .. . , Xn with coefficients in R 
the group ring of the group G over the ring R, and over the field F 
the ring of integers in the number field K 
the direct, and the inverse limit of the family of groups A; 
the p-adic integers, and the p-adic rationals 
the direct sum of A and B 
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the leading term of the polynomial f, the ideal of leading terms 
the 17 x 17, and the 17 x m matrices over R 
the matrix of the linear transformation rp 

with respect to bases l3 (domain) and£ (range) 
the trace of the matrix A 
the R-module homomorphisms from A to B 
the endomorphism ring of the module M 
the torsion submodule of M 
the annihilator of the module M 
the tensor product of modules M and N over R 
the kth tensor power, and the tensor algebra of M 
the kth symmetric power, and the symmetric algebra of M 
the kth exterior power, and the exterior algebra of M 
the minimal, and characteristic polynomial of T 
the characteristic of the field F 
the field K is an extension of the field F 
the degree of the field extension KIF 
the field generated over F by a or a, {3, etc. 
the minimal polynomal of a over the field F 
the group of automorphisms of a field K 
the group of automorphisms of a field K fixing the field F 
the Galois group of the extension KIF 
affine 17-space 
the coordinate ring of A", and of the affine algebraic set V 
the locus or zero set of I, the locus of an element f 
the ideal of functions that vanish on A 
the radical of the ideal I 
the associated primes for the module M 
the support of the module M 
the ring of fractions Oocalization) of R with respect to D 
the localization of R at the prime ideal P, and at the element f 
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the prime spectrum, and the maximal spectrum of R 
the structure sheaf of X = Spec R 
the ring of sections on an open set U in Spec R 
the stalk of the structure sheaf at P 
the Jacobson radical of the ring R 
the 17th cohomology group derived from HomR 
the 17th cohomology group derived from the tensor product over R 
the fixed points of G acting on the G-module A 
the 17th cohomology group of G with coefficients in A 
the restriction, and corestriction maps on cohomology 
the stability group of the series l � A � G 
the norm of the character e 
the character of the representation 1/f induced from H to G 
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Preface to the Third Edition 

The principal change from the second edition i s  the addition of Grobner bases to this 
edition. The basic theory is introduced in a new Section 9.6. Applications to solving 
systems of polynomial equations (elimination theory) appear at the end of this section, 
rounding it out as a self-contained foundation in the topic. Additional applications and 
examples are then woven into the treatment of affine algebraic sets and k-algebra homo
morphisms in Chapter 15. Although the theory in the latter chapter remains independent 
of Grobner bases, the new applications, examples and computational techniques sig
nificantly enhance the development, and we recommend that Section 9.6 be read either 
as a segue to or in parallel with Chapter 15 .  A wealth of exercises involving Grobner 
bases, both computational and theoretical in nature, have been added in Section 9.6 
and Chapter 15 .  Preliminary exercises on Grobner bases can (and should, as an aid to 
understanding the algorithms) be done by hand, but more extensive computations, and 
in particular most of the use of Grobner bases in the exercises in Chapter 15, will likely 
require computer assisted computation. 

Other changes include a streamlining of the classification of simple groups of order 
168 (Section 6.2), with the addition of a uniqueness proof via the projective plane of 
order 2. Some other proofs or portions of the text have been revised slightly. A number 
of new exercises have been added throughout the book, primarily at the ends of sections 
in order to preserve as much as possible the numbering schemes of earlier editions. 
In particular, exercises have been added on free modules over noncommutative rings 
( 10.3), on Krull dimension (15 .3), and on flat modules ( 10.5 and 17.1). 

As with previous editions, the text contains substantially more than can normally 
be covered in a one year course. A basic introductory (one year) course should probably 
include Part I up through Section 5.3, Part II through Section 9.5, Sections 10. 1 , 10.2, 
1 0.3, 1 1. 1 ,  11.2 and Part IV. Chapter 12 should also be covered, either before or after 
Part IV. Additional topics from Chapters 5, 6, 9, 1 0  and 1 1  may be interspersed in such 
a course, or covered at the end as time permits. 

Sections 10.4 and 10.5 are at a slightly higher level of difficulty than the initial 
sections of Chapter 10, and can be deferred on a first reading for those following the text 
sequentially. The latter section on properties of exact sequences, although quite long, 
maintains coherence through a parallel treatment of three basic functors in respective 
subsections. 

Beyond the core material, the third edition provides significant flexibility for stu
dents and instructors wishing to pursue a number of important areas of modem algebra, 

xi 



either in the form of independent study or courses. For example, well integrated one
semester courses for students with some prior algebra background might include the 

following: Section 9.6 and Chapters 15 and 16; or Chapters 10 and 17; or Chapters 5, 
6 and Part VI. Each of these would also provide a solid background for a follow-up 
course delving more deeply into one of many possible areas: algebraic number theory, 

algebraic topology, algebraic geometry, representation theory, Lie groups, etc. 

The choice of new material and the style for developing and integrating it into the 
text are in consonance with a basic theme in the book: the power and beauty that accrues 

from a rich interplay between different areas of mathematics. The emphasis throughout 
has been to motivate the introduction and development of important algebraic concepts 

using as many examples as possible. We have not attempted to be encyclopedic, but 
have tried to touch on many of the centra] themes in elementary algebra in a manner 

suggesting the very natural development of these ideas. 
A number of important ideas and results appear in the exercises. This is not because 

they are not significant, rather because they did not fit easily into the flow of the text 
but were too important to leave out entirely. Sequences of exercises on one topic 
are prefaced with some remarks and are structured so that they may be read without 

actually doing the exercises. In some instances, new material is introduced first in 
the exercises--often a few sections before it appears in the text-so that students may 

obtain an easier introduction to it by doing these exercises (e.g., Lagrange's Theorem 
appears in the exercises in Section 1.7 and in the text in Section 3.2). All the exercises 
are within the scope of the text and hints are given [in brackets] where we felt they were 
needed. Exercises we felt might be less straightforward are usually phrased so as to 

provide the answer to the exercise; as well many exercises have been broken down into 
a sequence of more routine exercises in order to make them more accessible. 

We have also purposely minimized the functorial language in the text in order to 

keep the presentation as elementary as possible. We have refrained from providing 

specific references for additional reading when there are many fine choices readily 
available. Also, while we have endeavored to include as many fundamental topics as 

possible, we apologize if for reasons of space or personal taste we have neglected any 
of the reader's particular favorites. 

We are deeply grateful to and would like here to thank the many students and 
colleagues around the world who, over more than 15 years, have offered valuable 

comments, insights and encouragement-their continuing support and interest have 
motivated our writing of this third edition. 

xii 

David Dummit 

Richard Foote 

June,2003 
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Pre l i m i naries 

Some results and notation that are used throughout the text are collected in this chapter 
for convenience. Students may wish to review this chapter quickly at first and then read 
each section more carefully again as the concepts appear in the course of the text. 

0.1 BASICS 

The basics of set theory: sets, n, U, E, etc. should be familiar to the reader. Our 
notation for subsets of a given set A will be 

B = {a E A I . . .  (conditions on a) . . . } .  

The order or cardinality of a set A will be denoted by lA I .  If  A i s  a finite set the order 
of A is simply the number of elements of A. 

It is important to understand how to test whether a particular x E A lies in  a subset 
B of A (cf. Exercises 1-4). The Cartesian product of two sets A and B is the collection 
A x  B = { (a , b) I a E A, b E  B}, of ordered pairs of elements from A and B. 

We shall use the following notation for some common sets of numbers: 
(1) Z = {0, ±1, ±2, ±3, . . .  } denotes the integers (the Z is for the German word for 

numbers: "Zahlen"). 
(2) Ql = {afb I a , b E Z, b =f:. 0} denotes the rational numbers (or rationals). 
(3) IR = { all decimal expansions ± d1d2 . . . dn .a1a2a3 . . .  } denotes the real numbers 

(or reals). 
(4) CC = {a + bi I a , b E IR, i2 = -1 } denotes the complex numbers. 
(5) z+, Q+ and JR+ will denote the positive (nonzero) elements in Z, Ql and IR, respec

tively. 

We shall use the notation f : A -+ B or A � B to denote a function f from A 
to B and the value off at a is denoted f(a) (i.e., we shall apply all our functions on 
the left). We use the words function and map interchangeably. The set A is called the 
domain off and B is called the codomain off. The notation f : a H- b or a H- b iff 
is understood indicates that f(a) = b, i.e., the function is being specified on elements. 

If the function f is not specified on elements it is important in general to check 
that f is well defined, i.e., is unambiguously determined. For example, if the set A 
is the union of two subsets A1 and A2 then one can try to specify a function from A 

1 



to the set (0, 1} by declaring that f is to map everything in A 1 to 0 and is to map 

everything in A2 to L This unambiguously defines f unless At and A2 have elements 
in common (in which case it is not clear whether these elements should map to 0 or to 

1 ). Checking that this f is well defined therefore amounts to checking that At  and A2 
have no intersection. 

The set 

f(A) = (b E B I b = f(a) , for some a E A}  
is a subset of B, called the range or image of f (or the image of A under f). For each 

subset C of B the set 
f-1 (C) = {a E A I f(a) E C} 

consisting of the elements of  A mapping into C under f is called the pre image or inverse 
image of C under f. For each b E B, the preimage of {b} under f is called the .fiber of 

f over b. Note that f-1 is not in general a function and that the fibers off generally 
contain many elements since there may be many elements of A mapping to the element 

b. 
If f : A -+ B and g : B -+ C, then the composite map g o f : A -+ C is defined 

by 
(g o f) (a) = g(f(a)) . 

Let f :  A -+  B. 
(1) f is injective or is an injection if whenever a1 I a2, then f(at) I f(a2) . 
(2) f is surjective or is a surjection if for all b E B there is some a E A such that 

f(a) = b, i.e., the image off is all of B. Note that since a function always maps 
onto its range (by definition) it is necessary to specify the codomain B in order for 

the question of swjectivity to be meaningful. 

(3) f is bijective or is a bijection if it is both injective and swjective. If such a bijection 
f exists from A to B, we say A and Bare in bijective correspondence. 

(4) f has a left inverse if there is a function g : B -+ A such that g o f : A -+ A is 

the identity map on A, i.e., (go f)(a) = a, for all a E A. 
(5) f has a right inverse if there is a function h : B -+ A such that f o h : B -+ B is 

the identity map on B. 

Proposition 1. Let f : A -+ B. 

(1) The map f is injective if and only if f  has a left inverse. 

(2) The map f is surjective if and only if f has a right inverse. 

(3) The map f is a bijection if and only if there exists g : B -+ A such that f o g 
is the identity map on B and g o f is the identity map on A.  

(4) I f  A and B are finite sets with the same number o f  elements (i.e., !A I = IBI), 

then f : A -+ B is bijective if and only if f is injective if and only if f is 

surjective. 

Proof: Exercise. 

In the situation of part (3) of the proposition above the map g is necessarily unique 

and we shall say g is the 2-sided inverse (or simply the inverse) of f. 

2 Preliminaries 



A permutation of a set A is simply a bijection from A to itself. 
If A s; Band f : B---+ C, we denote the restriction of f to A by !lA· When the 

domain we are considering is understood we shall occasionally denote f lA again simply 
as f even though these are formally different functions (their domains are different). 

If A s; B and g : A ---+ C and there is a function f : B ---+ C such that !lA = g, 
we shall say f is an extension of g to B (such a map f need not exist nor be unique). 

Let A be a nonempty set. 
(1) A binary relation on a set A is a subset R of Ax A and we write a"' b if(a , b) E R. 
(2) The relation "' on A is said to be: 

(a) reflexive if a "'a, for all a E A, 
(b) symmetric if a "'b implies b ""'a for all a, b E A, 
(c) transitive if a "' b and b ""' c implies a ""' c for all a ,  b, c E A. 
A relation is an equivalence relation if it is reflexive, symmetric and transitive. 

(3) If "' defines an equivalence relation on A, then the equivalence class of a E A is 
defined to be {x E A I x "' a} .  Elements of the equivalence class of a are said 
to be equivalent to a. If C is an equivalence class, any element of C is called a 
representative of the class C. 

(4) A partition of A is any collection {A; I i E I} of nonempty subsets of A (I some 
indexing set) such that 
(a) A= U;eJA;, and 
(b) A; n Ai = 0, for all i ,  j E I with i '# j 

i.e., A is the disjoint union of the sets in the partition. 

The notions of an equivalence relation on A and a partition of A are the same: 

Proposition 2. Let A be a nonempty set. 
(1) If""' defines an equivalence relation on A then the set of equivalence classes of 

""' form a partition of A. 
(2) If {A; I i E I} is a partition of A then there is an equivalence relation on A 

whose equivalence classes are precisely the sets A;, i E I. 

Proof: Omitted. 

Finally, we shall assume the reader is familiar with proofs by induction. 

E X E R C I S E S  

In Exercises 1 to 4 let A be the set of 2 x 2 matrices with real number entries. Recall that 
matrix multiplication is defined by 

(: :) ( � �) = ( �;! :� �=! ::) 
Let 

M
= (� D 
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and let 
B ={X E A I MX = XM}. 

1. Determine which of the following elements of A lie in B: 

2. Prove that if P, Q E B, then P+ Q E B(where +denotes the usual sum of two matrices). 

3. Prove that if P, Q E B, then P · Q E B (where· denotes the usual product of two matrices). 

4. Find conditions on p, q, r, s which determine precisely when ( � ; ) E B. 

5. Determine whether the following functions f are well defined : 
(a) f : Q-+ Z defined by f(ajb) =a. 
(b) f: Q-+ Qdefined by f(afb) =a2jb2• 

6. Determine whether the function f : JR.+ -+ Z defined by mapping a real number r to the 
first digit to the right of the decimal point in a decimal expansion of r is well defined . 

7. Let f : A -+ B be a surjective map of sets. Prove that the relation 

a � b if and only if j(a) = f(b) 

is an equivalence relation whose equivalence classes are the fibers of f. 

0.2 PROPERTI ES OF TH E INTEGERS 

The following properties of the integers Z (many familiar from elementary arithmetic) 
will be proved in a more general context in the ring theory of Chapter 8, but it will 
be necessary to use them in Part I (of course, none of the ring theory proofs of these 
properties will rely on the group theory) . 
(1) (Well Ordering of Z) If A is any non empty subset of z+, there is some element 

m E A such that m ::=:: a, for all a E A (m is called a minimal element of A). 
(2) If a ,  b E Z with a =I 0, we say a divides b if there is an element c E Z such that 

b = ac. In this case we write a I b; if a does not divide b we write a f b. 

(3) If a ,  bE Z- {0}, there is a unique positive integer d, called the greatest common 
divisor of a and b (or g.c.d. of a and b), satisfying: 

(a) d I a and d I b (so d is a common divisor of a and b), and 
(b) if e I a and e I b, then e I d (sod is the greatest such divisor). 
The g.c.d. of a and b will be denoted by (a , b). If (a, b)= 1, we say that a and b 

are relatively prime. 
(4) If a ,  b E Z - {0}, there is a unique positive integer l, called the least common 

multiple of a and b (or l.c.m. of a and b), satisfying: 
(a) a 11 and b 11 (sol is a common multiple of a and b), and 
(b) if a I m and b 1 m, then I I m (so I is the least such multiple). 
The connection between the greatest common divisor d and the least common 
multiple l of two integers a and b is given by dl = ab. 

(5) The Division Algorithm: if a,  b E Z - {0}, then there exist unique q, r E Z such 
that 

a =  qb + r and 0 ::=:: r < lbl, 
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where q is the quotient and r the remainder. This is the usual "long division" 
familiar from elementary arithmetic. 

(6) The Euclidean Algorithm is an important procedure which produces a greatest 
common divisor of two integers a and b by iterating the Division Algorithm: if 
a, b E  Z - {0}, then we obtain a sequence of quotients and remainders 

a =  qob + ro 
b = q1 ro + r1 
ro = q2r1 + r2 
r1 = q3r2 + r3 

rn-2 = Qnrn- l + rn 
rn-1 = Qn+l rn 

(0) 
( 1 )  

(2) 
(3) 

(n) 
(n+l) 

where rn is the last nonzero remainder. Such an rn exists since lbl > lro l > l r1 l > 

· · · > lrn I is a decreasing sequence of strictly positive integers if the remainders 
are nonzero and such a sequence cannot continue indefinitely. Then rn is the g.c.d. 
(a , b) of a and b. 

Example 

Suppose a = 57970 and b = 10353. Then applying the Euclidean Algorithm we obtain : 

57970 = (5)10353 + 6205 

10353 = (1)6205 + 4148 

6205 = (1)4148 + 2057 

4148 = (2)2057 + 34 

2057 = (60)34 + 17 

34 = (2)17 

which shows that (57970, 10353) = 17. 

(7) One consequence of the Euclidean Algorithm which we shall use regularly is the 
following: if a ,  b E Z - {0}, then there exist x, y E Z such that 

(a ,  b) = ax + by 

that is, the g. c. d. of a and b is a Z-linear combination of a and b. This follows 
by recursively writing the element rn in the Euclidean Algorithm in terms of the 
previous remainders(namely, use equation (n) above to solve for rn = rn_2 -qnrn-l 
in terms of the remainders rn-l and rn-2. then use equation (n- 1) to write rn in 
terms of the remainders rn-2 and rn-3• etc., eventually writing rn in terms of a and 
b). 
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Example 
Suppose a= 57970 andb = 10353, whose greatest common divisorwe computed above to 
be 17. From the fifth equation (the next to last equation ) in the Euclidean Algorithm applied 
to these two integers we solve for their greatest common divisor: 17 = 2057 - (60)34. 
The fourth equation then shows that 34 = 4148 - (2)2057, so substituting this expression 
for the previous remainder 34 gives the equation 17 = 2057- (60)[4148- (2)2057], i.e. , 
17 = (121)2057- (60)4148. Solving the third equation for 2057 and substituting gives 
17 = (121)[6205- (1)4148]- (60)4148 = (121)6205- (181)4148. Using the second 
equation to solve for 4148 and then the first equation to solve for 6205 we finally obtain 

17 = (302)57970- (169 1)10353 

as can easily be checked directly. Hence the equation ax + by = (a, b) for the greatest 
common divisor of a and bin this example has the solution x = 302 and y = -169 1 .  Note 
that it is relatively unlikely that this relation would have been found simply by guessing. 

The integers x and y in (7) above are not unique. In the example w ith a = 57970 
and b = 1 0353 we determined o ne solution to be x = 302 and y = - 1 691 ,  for 
i nstance, and it is relatively simple to check that x = -307 and y = 1719 also 
satisfy 57970x + 1 0353y = 17.  The general solutio n for x and y is known (c f. the 
exer cises below and i n  Chapter 8). 

(8) An element p of z+ is called a prime if p > 1 and the o nly positive divisors of p are 
1 and p (initially, the word prime will refer only to positive integers). An integer 
n > 1 which is not prime is called composite. For example, 2,3,5,7, 1 1 , 1 3,17, 19, . . .  
are p rimes and 4,6,8,9, 1 0, 1 2, 1 4, 15 , 16, 1 8, ... are composite. 
An important property of primes (which in fact can be used to define the primes 
(cf. Exercise 3)) is the following: if p is a prime and p I ab, for some a, b E Z, 
the n either p I a or p I b. 

(9) The Fundamental Theorem of Arithmetic says : if n E Z, n > 1 ,  the n n can 
be factored uniquely into the product of primes, i.e., there are distinct primes 

6 

P1, P2 • . . .  , Ps and positive integers a1, a2, ... , as such that 

n = prJ p�2 ... p�'. 

This factorizatio n is unique in the sense that if q1 , q2, ... , q1 are any disti nct primes 
and fh, fh, . . . , {31 positive integers such that 

/31 /32 {3, n = ql q2 · · .qt • 

the n s = t and if we arrange the two sets of primes in increasing order, the n q; = p; 
and a; = {3;, 1 ::::: i::::: s .  For example, n = 1 852423848 = 2332 1 12 1933 1  and this 
decomposition into the product of primes is unique. 

Suppose the positive integers a and bare expressed as products of prime powers : 

a = p�l p�2 ... p�s' b = pfl p� ... pfs 

where p1, P2 • . . .  , Ps are disti nct and the exponentsare � O (we allow the expone nts 
to be 0 here so that the products are take n over the same set of primes - the expo nent 
will be 0 if that prime is not ac tually a div isor) . The n the greatest common divisor 
of a and b is 
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(and the least common multiple is obtained by instead taking the maximum of the 
ai and fh instead of the minimum). 

Example 

In the example above, a = 57970 and b = I 0353 can be factored as a = 2 · 5 · II · I7 · 3I 
and b = 3 · 7 · I7- 29, from which we can immediately conclude that their greatest common 
divisor is 17. Note, however, that for large integers it is extremely difficult to determine 
their prime factorizations (several common codes in current use are based on this difficulty, 
in fact), so that this is not an effective method to determine greatest common divisors in 
general. The Euclidean Algorithm will produce greatest common divisors quite rapidly 
without the need for the prime factorization of a and b. 

(10) The Euler rp-function is defined as follows: for n e z+ let rp(n) be the number of 
positive integers a _::::: n with a relatively prime to n, i.e., (a ,  n) = 1. For example, 
rp(12) = 4 since 1 ,  5, 7 and 1 1  are the only positive integers less than or equal 
to 12 which have no factors in common with 12. Similarly, rp( l) = 1, rp(2) = 1 ,  
rp (3) = 2, rp(4) = 2 ,  rp(S) = 4 ,  rp(6) = 2, etc. For primes p,  rp(p) = p- 1,  and, 
more generally, for all a =::: 1 we have the formula 

rp(pa) = pa _pa-l 
= pa-l (p _ 1) . 

The function rp is multiplicative in the sense that 

rp(ab) = rp(a)rp(b) if (a , b) = 1 
(note that it is important here that a and b be relatively prime). Together with the for
mula above this gives a general formula for the values of rp : if n = p�1 p�2 . . .  p�s, 
then 

rp(n) = rp(p�I)rp(p�2) . . .  rp(p�s) 
= P�1-1 (PI - 1)p�2-1 (pz - 1) . . .  p�s-l (Ps - 1). 

For example, rp(12) = rp(22)rp (3) = 21 (2 - 1)3°(3 - 1)  = 4. The reader should 
note that we shall use the letter rp for many different functions throughout the text 
so when we want this letter to denote Euler's function we shall be careful to indicate 
this explicitly. 

E X E R C I S E S 

l. For each of the following pairs of integers a and b, determine their greatest common 
divisor, their least common multiple, and write their greatest common divisor in the form 
ax + by for some integers x and y. 
(a) a = 20, b = 13. 
(b) a= 69, b = 372. 
(c) a = 792, b = 275. 
(d) a = Il39I, b = 5673. 
(e) a= I76I, b = I567. 
(f) a = 507885, b = 60808. 

2. Prove that if the integer k divides the integers a and b then k divides as + bt for every pair 
of integers s and t. 
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3. Prove that if n is composite then there are integers a and b such that n divides ab but n 
does not divide either a or b. 

4. Let a, b and N be fixed integers with a and b nonzero and let d = (a, b) be the greatest 
common divisor of a and b. Suppose xo and YO are particular solutions to ax + by = N 
(i.e., axo + byo = N). Prove for any integer t that the integers 

b a 
X = XO + dt and y = YO - d' 

are also solutions to ax + by = N (this is in fact the general solution). 

5. Determine the value ({l(n) for each integer n :::: 30 where ({I denotes the Euler ({!-function. 

6. Prove the Well Ordering Property of Z by induction and prove the minimal element is 
unique. 

7. If p is a prime prove that there do not exist nonzero integers a and b such that a2 = pb2 

(i.e., �is not a rational number). 

8. Let p be a prime, n E z+. Find a formula for the largest power of p which divides 
n! = n(n - l) (n - 2 )  . . .  2 · 1 ( it involves the greatest integer function). 

9. Write a computer program to determine the greatest common divisor (a, b) of two integers 
a and b and to express (a, b) in the form ax + by for some integers x and y. 

10. Prove for any given positive integer N there exist only finitely many integers n with 
({l(n) = N where ({I denotes Euler's ({!-function. Conclude in particular that ({l(n) tends to 
infinity as n tends to infinity. 

11. Prove that if d divides n then ({!(d) divides ({l(n) where ({I denotes Euler's ({!-function. 

0.3 Zjn Z: THE I NTEGERS MODULO n 
Let n be a fixed positive integer. Define a relation on Z by 

a '"'"'b if and only if n I (b- a). 
Clearly a "' a, and a '"'"' b implies b ""' a for any integers a and b, so this 

relation is trivially reflexive and symmetric. If a ""' b and b '"'"' c then n divides a - b 
and n divides b - c so n also divides the sum of these two integers, i.e., n divides 
(a -b) + (b-c) = a - c, so a '"'"' c and the relation is transitive. Hence this is an 
equivalence relation. Write a = b (mod n) (read: a is congruent to b mod n) if a '"'"'b. 
For any k E Z we shall denote the equivalence class of a by a - this is called the 
congruence class or residue class of a mod n and consists of the integers which differ 
from a by an integral multiple of n, i.e., 

a = {a + kn I k E Z} 

= {a , a ±  n, a ±  2n, a ±  3n, . . .  }. 

There are precisely n distinct equivalence classes mod n, namely 

0, 1, 2, . . . , n - 1 

determined by the possible remainders after division by n and these residue classes 
partition the integers Z. The set of equivalence classes under this equivalence relation 
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will be denoted by ZjnZ and called the integers modulo n (or the integers mod n). 
The motivation for this notation will become clearer when we discuss quotient groups 
and quotient rings. Note that for different n's the equivalence relation and equivalence 
classes are different so we shall always be careful to fix n first before using the bar 
notation. The process of finding the equivalence class mod n of some integer a is often 
referred to as reducing a mod n .  This terminology also frequently refers to finding the 
smallest nonnegative integer congruent to a mod n (the least residue of a mod n ). 

We can define an addition and a multiplication for the elements of ZjnZ, defining 
modular arithmetic as follows: for ii, b E Z/ nZ, define their sum and product by 

and ii · b = ab. 
What this means is the following: given any two elements ii and b in Z/ nZ, to compute 
their sum (respectively, their product) take any representative integer a in the class 
ii and any representative integer b in the class b and add (respectively, multiply) the 
integers a and b as usual in Z and then take the equivalence class containing the result. 
The following Theorem 3 asserts that this is well defined, i.e., does not depend on the 
choice of representatives taken for the elements ii and b of ZjnZ. 

Example 

Suppose n = 12 and consider Z/12Z, which consists of the twelve residue classes 

o, 1,2, ... . IT 
determined by the twelve possible remainders of an integer after division by 12. The 
elements in the residue class 5, for example, are the integers which leave a remainder of 5 
when divided by 12 (the integers congruent to 5 mod 12). Any integer congruent to 5 mod 
12 (such as 5, 17, 29, ... or -7, -19, ... ) will serve as a representative for the residue class 
5. Note that Z/12Z consists of the twelve elements above (and each of these elements of 

Z / 12Z consists of an infinite number of usual integers). 

Suppose now that ii = 5 and b = 8. The most obvious representative for ii is the integer 
5 and similarly 8 is the most obvious representative for b. Using these representatives for 
the residue classes we obtain 5 + 8 = 13 = I since 13  and 1 lie in the same class modulo 
n = 12. Had we instead taken the representative 17, say, for ii (note that 5 and 17 do lie in 
the same residue class modulo 12) and the representative -28, say, forb, we would obtain 

5 + 8 = (17 - 28) = - 1 1  = I and as we mentioned the result does not depend on the 
choice ofrepresentatives chosen. The productofthese two classes isii·

b = 5 · 8 = 40 = 4, 
also independent of the representatives chosen. 

Theorem 3. The operations of addition and multiplication on ZjnZ defined above 
are both well defined, that is, they do not depend on the choices of representatives for 

the classes involved. More precisely, if a1 , a2 E Z and b1 , b2 E Z with a1 = b1 and 

a2 = b2, then a, + a2 = b, + b2 and a1a2 = b1b2 , i.e. , if 

a1 = b1 (mod n) and a2 = b2 (mod n) 
then 
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Proof: Suppose a1 = b1 (mod n ), i.e., a1 -b1 is divisible by n. Then a1 = b1 + sn 
for some integers. Similarly, a2 = b2 (mod n) means a2 = b2 + tn for some integer t. 
Thena1 +a2 = (b1 + h2)+ (s+ t)n sothata1 +a2 = ht + b2 (mod n), which shows that 
the sum of the residue classes is independent of the representatives chosen. Similarly, 
a1a2 = (bt+sn)(�+tn) = btb2+(ht t+ b2s+stn)n shows thatata2 = b1b2 (mod n) 
and so the product of the residue classes is also independent of the representatives 
chosen, completing the proof. 

We shall see later that the process of adding equivalence classes by adding their 
representatives is a special case of a more general construction (the construction of 
a quotient). This notion of adding equivalence classes is already a familiar one in 
the context of adding rational numbers: each rational number a j b is really a class of 
expressions: ajb = 2aj2b = -3aj- 3b etc. and we often change representatives 
(for instance, take common denominators) in order to add two fractions (for example 
1 /2 + 1/3 is computed by taking instead the equivalent representatives 3/6 for 1 /2 
and 2/6 for 1/3 to obtain 1 /2 + 1/3 = 3j6 + 2/6 = 5/6). The notion of modular 
arithmetic is also familiar: to find the hour of day after adding or subtracting some 
number of hours we reduce mod 12 and find the least residue. 

It is important to be able to think of the equivalence classes of some equivalence 
relation as e lements which can be manipulated (as we do, for example, with fractions) 
rather than as sets. Consistent with this attitude, we shall frequently denote the elements 
of 'll/ n'll simply by {0, 1 ,  ... , n -1} where addition and multiplication are reduced mod 
n. It is important to remember, however, that the elements of 'llf n'll are not integers, but 
rather collections of usual integers, and the arithmetic is quite different. For example, 
5 + 8 is not 1 in the integers 7l as it was in the example of 7l/ 127l above. 

The fact that one can define arithmetic in 'lljn'll has many important applications 
in elementary number theory. As one simple example we compute the last two digits in 
the number 21000• First observe that the last two digits give the remainder of21000 after 
we divide by 100 so we are interested in the residue class mod 100 containing 21000. 
We compute 210 = 1024 = 24 (mod 100), so then 220 = (210)2 = 242 = 576 = 76 
(mod 100) . Then 240 = (220)2 = 762 = 5776 = 76 (mod 100) .  Similarly 280 = 
21 60 = 2320 = 2640 = 76 (mod 100). Finally, 21000 = 26402320240 = 76 . 76 . 76 = 76 
(mod 100) so the final two digits are 76. 

An important subset of 'llj n'll consists of the collection of residue classes which 
have a multiplicative inverse in 'll/ n'll: 

('lljn'll)x = {a E 'llfn'lll there exists c E 'll/n'll with a · c = l}. 

Some of the following exercises outline a proof that ('lljn'll)x is also the collection 
of residue classes whose representatives are relatively prime to n, which proves the 
following proposition. 

Proposition 4. ('lljn'll)x = {a E 'llfn'lll (a, n) = 1}. 

It is easy to see that if any representative of a is relatively prime to n then all 
representatives are relatively prime to n so that the set on the right in the proposition is 
well defined. 
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Example 

For n = 9 we obtain (7Lj9u'Y = (f, 2, 4, 5, 7, 8) from the proposition. The multiplicative 
inverses of these elements are {I, 5, 7, 2, 4, 8}, respectively. 

If a is an integer relatively prime to n then the Euclidean Algorithm produces integers 
x and y satisfying ax + ny = 1, hence ax = 1 (mod n), so that .X is the multiplicative 
inverse of ii in Z/ nZ. This gives an efficient method for computing multiplicative 
inverses in ZjnZ. 

Example 

Suppose n = 60 and a = 17 .  Applying the Euclidean Algorithm we obtain 

60 = (3)17+9 
17= (1 )9+8 
9 = (1)8 + 1 

so that a and n are relatively prime, and (-7) 17 + (2)60 = 1. Hence -7 = 53 is the 
multiplicative inverse of 17 in 7Lj607L. 

E X E R C I S E S  

1. Write down explicitly all the elements in the residue classes of Z/187L. 
2. Prove that the distinct equivalence classes in Zj n'lL are precisely 0, i, 2, ... , n - 1 ( use 

the Division Algorithm). 

3. Prove that if a = a,. 10n + a11-tl0n-t + · · · +arlO+ ao is any positive integer then 
a = a,. + an-1 + · · · + a1 + ao (mod 9) (note that this is the usual arithmetic rule that 
the remainder after division by 9 is the same as the sum of the decimal digits mod 9 - in 
particular an integer is divisible by 9 if and only if the sum of its digits is divisible by 9) 
[note that 10 = 1 (mod 9)]. 

4. Compute the remainder when 37100 is divided by 29. 
5. Compute the last two digits of 9I500. 
6. Prove that the squares of the elements in Z/ 47L are just 0 and I. 
7. Prove for any integers a and b that a2 + b2 never leaves a remainder of 3 when divided by 

4 (use the previous exercise). 

8. Prove that the equation a2 + b2 = 3c2 has no solutions in nonzero integers a, b and c. 
[Consider the equation mod 4 as in the previous two exercises and show that a, b and c 
would all have to be divisible by 2. Then each of a2, b2 and c2 has a factor of 4 and by 
dividing through by 4 show that there would be a smaller set of solutions to the original 
equation. Iterate to reach a contradiction.] 

9. Prove that the square of any odd integer always leaves a remainder of 1 when divided by 
8. 

10. Prove that the number of elements of ('lL/n'lL) x  is cp(n) where cp denotes the Euler cp
function. 

11. Prove that if a, bE (7Ljn7L)x , then a· bE (7Ljn7LY. 
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U. Let n E Z, n > 1 ,  and let a E Z with 1 � a � n .  Prove if a and n are not relatively prime, 
there exists an integer b with 1 � b < n such that ab = 0 (mod n) and deduce that there 
cannot be an integer c such that ac = 1 (mod n) .  

13. Let n E Z, n > 1, and let a E Z with 1 � a � n.  Prove that if a and n are relatively prime 
then there is an integer c such that ac = I (mod n) ;[use the fact that the g.c.d. of two 
integers is a Z-linear combination of the integers] . 

14. Conclude from the previous two exercises that (Z/nZ) x is the set of elements ii of ZfnZ 
with (a , n) = 1 and hence prove Proposition 4. Verify this directly in the case n = 12. 

15. For each of the following pairs of integers a and n,  show that a is relatively prime to n and 
determine the multiplicative inverse of ii in Z/ nZ. 
(a) a = 13, n = 20. 
(b) a = 69, n = 89. 
(c) a = 1891 ,  n = 3797. 
(d) a = 6003722857, n = 77695236973. [The Euclidean Algorithm requires only 3 

steps for these integers.] 
16. Write a computer program to add and multiply mod n, for any n given as input. The output 

of these operations should be the least residues of the sums and products of two integers. 
Also include the feature that if (a , n) = 1 ,  an integer c between 1 and n - 1 such that 
ii · c = 1 may be printed on request. (Your program should not, of course, simply quote 
"mod" functions already built into many systems). 

, 
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Pa rt I 

G RO U P TH EO RY 

The modem treatment of abstract algebra begins with the disarmingly simple abstract 
definition of a group. This simple definition quickly leads to difficult questions involving 
the structure of such objects. There are many specific examples of groups and the power 
of the abstract point of view becomes apparent when results for all of these examples 
are obtained by proving a single result for the abstract group. 

The notion of a group did not simply spring into existence, however, but is rather the 
culmination of a long period of mathematical investigation, the first formal definition 
of an abstract group in the form in which we use it appearing in 1882. 1 The definition 
of an abstract group has its origins in extremely old problems in algebraic equations, 
number theory, and geometry, and arose because very similar techniques were found 
to be applicable in a variety of situations. As Otto Holder (1 859-1937) observed, one 
of the essential characteristics of mathematics is that after applying a certain algorithm 
or method of proof one then considers the scope and limits of the method. As a result, 
properties possessed by a number of interesting objects are frequently abstracted and 
the question raised: can one determine all the objects possessing these properties? 
Attempting to answer such a question also frequently adds considerable understanding 
of the original objects under consideration. It is in this fashion that the definition of an 
abstract group evolved into what is, for us, the starting point of abstract algebra. 

We illustrate with a few of the disparate situations in which the ideas later formalized 
into the notion of an abstract group were used. 

(1) In number theory the very object of study, the set of integers, is an example of a 
group. Consider for example what we refer to as "Euler's Theorem" (cf. Exercise 
22 of Section 3.2), one extremely simple example of which is that a40 has last two 
digits 01 if a is any integer not divisible by 2 nor by 5 .  This was proved in 1761 
by Leonhard Euler (1707-1783) using "group-theoretic" ideas of Joseph Louis 
Lagrange ( 1736-1 8 1 3), long before the first formal definition of a group. From 
our perspective, one now proves "Lagrange's Theorem" (cf. Theorem 8 of Section 
3.2), applying these techniques abstracted to an arbitrary group,.and then recovers 
Euler's Theorem (and many others) as a special case. 
1 For most of the historical comments below, see the excellent book A History of Algebra, by B. L. 

van der Waerden, Springer-Verlag, 1980 and the references there, particularly The Genesis of the Abstract 
Group Concept: A Contribution to the History of the Origin of Abstract Group Theory (translated from 
the German by Abe Shenitzer), by H. Wussing, MIT Press, 1984. See also Number Theory, An Approach 
Through History from Hammurapai to Legendre, by A. Weil, Birkhii.user, 1984. 
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(2) Investigations into the question of rational solutions to algebraic equations of the 
form y2 

= x3 - 2x (there are infinitely many, for example (0, 0) , ( - 1 ,  1) ,  (2, 2) , 
(914, -2118) , ( - 11169, 23912 197)) showed that connecting any two solutions by 
a straight line and computing the intersection of this line with the curve y2 = 

x3 - 2x produces another solution. Such ''Diophantine equations," among others, 
were considered by Pierre de Fermat ( 1 601-1655) (this one was solved by him in 
1644), by Euler, by Lagrange around 1777, and others. In 1730 Euler raised the 

question of determining the indefinite integral J dx I J 1 - x4 of the "lemniscatic 

differential" dx I J 1 - x4, used in determining the arc length along an ellipse (the 
question had also been considered by Gottfried Wilhelm Leibniz ( 1646-17 16) and 
Johannes Bernoulli ( 1667 -17 48) ). In 17 52 Euler proved a "multiplication formula" 
for such elliptic integrals (using ideas of G.C. di Fagnano ( 1682-1766), received 
by Euler in 175 1  ), which shows how two elliptic integrals give rise to a third, 
bringing into existence the theory of elliptic functions in analysis. In 1 834 Carl 
Gustav Jacob Jacobi ( 1 804-1 85 1) observed that the work of Euler on solving certain 
Diophantine equations amounted to writing the multiplication formula for certain 
elliptic integrals. Today the curve above is referred to as an "elliptic curve" and 
these questions are viewed as two different aspects of the same thing - the fact 
that this geometric operation on points can be used to give the set of points on an 
elliptic curve the structure of a group. The study of the "arithmetic" of these groups 
is an active area of current research. 2 

(3) By 1824 it was known that there are formulas giving the roots of quadratic, cubic 
and quartic equations (extending the familiar quadratic formula for the roots of 
ax2 + bx + c = 0). In 1 824, however, Niels Henrik Abel ( 1802-1829) proved 
that such a formula for the roots of a quintic is impossible ( cf. Corollary 40 of 
Section 14.7). The proof is based on the idea of examining what happens when 
the roots are permuted amongst themselves (for example, interchanging two of the 
roots). The collection of such permutations has the structure of a group (called, 
naturally enough, a "permutation group"). This idea culminated in the beautiful 
work of Evariste Galois ( 18 1 1-1 832) in 1 830-32, working with explicit groups 
of "substitutions." Today this work is referred to as Galois Theory (and is the 
subject of the fourth part of this text). Similar explicit groups were being used 
in geometry as collections of geometric transformations (translations, reflections, 
etc.) by Arthur Cayley ( 1 821-1 895) around 1 850, Camille Jordan ( 1838-1922) 
around 1 867, Felix Klein ( 1 849-1925) around 1 870, etc., and the application of 
groups to geometry is still extremely active in current research into the structure of 
3-space, 4-space, etc. The same group arising in the study of the solvability of the 
quintic arises in the study of the rigid motions of an icosahedron in geometry and 
in the study of elliptic functions in analysis. 

The precursors of today's abstract group can be traced back many years, even 
before the groups of "substitutions" of Galois. The formal definition of an abstract 
group which is our starting point appeared in 1 882 in the work of Walter Dyck ( 1 856-
1 934), an assistant to Felix Klein, and also in the work of Heinrich Weber ( 1 842-1913) 

2See The Arithmetic of Elliptic Curves by J. Silvennan. Springer-Verlag, 1986. 
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in the same year. 
It is frequently the case in mathematics research to find specific application of 

an idea before having that idea extracted and presented as an item of interest in its 
own right (for example, Galois used the notion of a "quotient group" implicitly in his 
investigations in 1 830 and the definition of an abstract quotient group is due to HOlder in 
1889). It is important to realize, with or without the historical context, that the reason the 
abstract definitions are made is because it is useful to isolate specific characteristics and 
consider what structure is imposed on an object having these characteristics. The notion 
of the structure of an algebraic object (which is made more precise by the concept of 
an isomorphism - which considers when two apparently different objects are in some 
sense the same) is a major theme which will recur throughout the t�xt. 
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CHAPTER 1 

I ntrod u cti o n  to G ro u ps 

1 .1 BASIC AXIOMS AN D EXAMPLES 

In this section the basic algebraic structure to be studied in Part I is introduced and some 
examples are given. 

Definition. 
(1) A binary operation * on a set G is a function * : G x G ---+ G. For any a, b E G 

we shall write a * b for *(a , b) . 
(2) A binary operation * on a set G is associative if for all a, b, c E G we have 

a • (b • c) = (a • b) • c. 
(3) If * is a binary operation on a set G we say elements a and b of G commute if 

a • b  = b •a .  We say * (or G) is commutative if for all a, b E G, a • b  = b • a. 

Examples 

(1) + (usual addition) is a commutative binary operation on IZ (or on Q, IR, or C respec
tively). 

(2) x (usual multiplication) is a commutative binary operation on IZ (or on Q, IR, or C 
respectively). 

(3) - (usual subtraction) is a noncommutative binary operation on IZ, where -(a,  b) = 
a - b. The map a �---+ -a is not a binary operation (not binary). 

(4) - is not a binary operation on z+ (nor Q+ , JR+) because for a, b E z+ with a < b, 
a - b f}!' z+, that is, - does not map z+ X z+ into z+. 

(5) Taking the vector cross-product of two vectors in 3-space JR3 is a binary operation 
which is not associative and not commutative. 

Suppose that * is a binary operation on a set G and H is a subset of G. If the 
restriction of * to H is a binary operation on H, i.e., for all a, b E H, a * b E H, 
then H is said to be closed under *· Observe that if * is an associative (respectively, 
commutative) binary operation on G and * restricted to some subset H of G is a binary 
operation on H, then * is automatically associative (respectively, commutative) on H 
as well. 

Definition. 
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(1) A group is an ordered pair (G, *) where G is a set and * is a binary operation 
on G satisfying the following axioms: 



(i) (a * b) *  c = a *  (b * c) , for all a ,  b, c E G, i.e., * is associative, 
(ii) there exists an element e in G, called an identity of G, such that for all 

a E G we have a * e  = e * a  = a, 
(iii) for each a E G there is an element a-1 of G, called an inverse of a, 

such that a * a-1 = a-1 * a = e. 
(2) The group ( G, *) is called abelian (or commutative ) if a * b = b * a for all 

a, b E G. 

We shall immediately become less formal and say G is a group under * if (G, *) is 
a group (or just G is a group when the operation * is clear from the context). Also, we 
say G is a finite group if in addition G is a finite set. Note that axiom (ii) ensures that 
a group is always nonempty. 

Examples 

(1) &::, Q, lR and C are groups under + with e = 0 and a- 1 = -a, for all a.  

(2) Q - {0}, lR - {0} , C - {0}, Q+ , JR+ are groups under x with e = 1 and a- 1 = �. 
a 

for all a. Note however that Z - {0} is not a group under x because although x is an 
associative binary operation on Z - {0}, the element 2 (for instance) does not have an 
inverse in Z - {0} . 

We have glossed over the fact that the associative law holds in these familiar ex
amples. For Z under + this is a consequence of the axiom of associativity for addition 
of natural numbers. The associative law for Q under + follows from the associative 
law for Z - a proof of this will be outlined later when we rigorously construct Q from 
Z (cf. Section 7.5).  The associative laws for JR. and, in tum, C under + are proved 
in elementary analysis courses when JR. is constructed by completing Q - ultimately, 
associativity is again a consequence of associativity for Z. The associative axiom for 
multiplication may be established via a similar development, starting first with Z. Since 
JR. and C will be used largely for illustrative purposes and we shall not construct JR. from 
Q (although we shall construct C from JR.) we shall take the associative laws (under + 
and x ) for JR. and C as given. 

Examples (continued) 

(3) The axioms for a vector space V include those axioms which specify that (V, +) is an 
abelian group (the operation + is called vector addition). Thus any vector space such 
as lRn is, in particular, an additive group. 

(4) For n E z+, ZjnZ is an abelian group under the operation + of addition of residue 
classes as described in Chapter 0. We shall prove in Chapter 3 (in a more general 
context) that this binary operation + is well defined and associative; for now we take 

this for granted. The identity in this group is the element 6 and for each ii E ZjnZ, 
the inverse of ii is -a. Henceforth, when we talk about the group ZjnZ it will be 
understood that the group operation is addition of classes mod n. 

(5) For n E z+, the set (ZjnZ)x of equivalence classes ii which have multiplicative 
inverses mod n is an abelian group under multiplication of residue classes as described 
in Chapter 0. Again, we shall take for granted (for the moment) that this operation 

is well defined and associative. The identity of this group is the element 1 and, by 

Sec. 1 . 1 Basic Axioms and Examples 1 7 



'definition of (Z/ nZ) x , each element has a multiplicative inverse. Henceforth, when 
we talk about the group (Z/nZ) x it will be understood that the group operation is 
multiplication of classes mod n. 

(6) If (A , *) and (B,  <>) are groups, we can form a new group A x B, called their direct 
product, whose elements are those in the Cartesian product 

A x B = {(a ,  b) I a E A ,  b E  B )  

and whose operation i s  defined componentwise: 

(at , bt ) (az , bz) = (a t * az ,  b1 <> bz) .  

For example, i f  we take A = B = lR (both operations addition), lR x lR i s  the familiar 
Euclidean plane. The proof that the direct product of two groups is again a group is 
left as a straightforward exercise (later) - the proof that each group axiom holds in 
A x B is a consequence of that axiom holding in both A and B together with the fact 
that the operation in A x B is defined componentwise. 

There should be no confusion between the groups 'lL/n'lL (under addition) and 
('1/., / n'lL) x (under multiplication), even though the latter is a subset of the former - the 
superscript x will always indicate that the operation is multiplication. 

Before continuing with more elaborate examples we prove two basic results which 
in particular enable us to talk about the identity and the inverse of an element. 

Proposition 1. If G is a group under the operation * , then 
(1) the identity of G is unique 
(2) for each a E G, a-1 is uniquely determined 
(3) (a-1 )- 1 = a  for all a E G 
(4) (a * b)-1 = (b- 1 ) * (a- 1 ) 
(5) for any a1 , a2 , • • •  , an E G the value of a1 * az * · · · * an is independent of how 

the expression is bracketed (this is called the generalized associative law). 

Proof" (1 ) If f and g are both identities, then by axiom (ii) of the definition of a 
group f * g = f (take a = f and e = g). By the same axiom f * g = g (take a = g 
and e = f). Thus f = g, and the identity is unique. 

(2) Assume b and c are both inverses of a and let e be the identity of G .  By axiom 
(iii), a *  b = e and c * a  = e. Thus 

= c • (a • b) 
= (c • a) • b  
= e • b 
= b  

(definition of e - axiom (ii)) 

(since e = a * b )  
(associative law) 

(since e = c * a ) 
(axiom (ii)). 

(3) To show (a-1 )- 1 = a  is exactly the problem of showing a is the inverse of a-1 
(since by part (2) a has a unique inverse). Reading the definition of a-1 , with the roles 
of a and a-1 mentally interchanged shows that a satisfies the defining property for the 
inverse of a-1 , hence a is the inverse of a-1 • 
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(4) Let c = (a *  b)-1 so by definition of c, (a * b) * c = e. By the associative law 

a * (b * c) = e. 

Multiply both sides on the left by a-1 to get 

a-1 * (a *  (b * c)) = a-1 * e. 

The associative law on the left hand side and the definition of e on the right give 

(a-1 * a) * (b * c) = a-1 

so 
e * (b * c) = a-1 

hence 

Now multiply both sides on the left by b-1 and simplify similarly: 

b-1 * (b * c) = b-1 * a-1 

(b-1 * b) *  c = b- 1 * a-1 

e * C  = b-l * a-1 

C = b-l * a- 1 ,  

as claimed. 
(5) This is left as a good exercise using induction on n. First show the result is true 

for n = 1 ,  2, and 3. Next assume for any k < n that any bracketing of a product of k 
elements, b1 * b2 * · · · * bk can be reduced (without altering the value of the product) to 
an expression of the form 

Now argue that any bracketing of the product a1 * a2 * · · · * an must break into 2 
subproducts, say (at * a2 * · · · * ak) * (ak+1 * ak+2 * · · · * an), where each sub-product 
is bracketed in some fashion. Apply the induction assumption to each of these two 
sub-products and finally reduce the result to the form a1 * (a2 * (a3 * (· · · * an)) . . .  ) to 
complete the induction. 

Note that throughout the proof of Proposition 1 we were careful not to change 
the order of any products (unless permitted by axioms (ii) and (iii)) since G may be 
non-abelian. 

Notation: 
(1) For an abstract group G it is tiresome to keep writing the operation * throughout 

our calculations. Henceforth (except when necessary) our abstract groups G, H,  
etc. will always be  written with the operation as  · and a · b will always be  written 
as ab. In view of the generalized associative law, products of three or more group 
elements will not be bracketed (although the operation is still a binary operation). 
Finally, for an abstract group G (operation ·) we denote the identity of G by L 

Sec. 1 .1 Basic Axioms and Examples 1 9 



(2) For any group G (operation · implied) and x E G and n E z+ since the product 
xx · · · x (n terms) does not depend on how it is bracketed, we shall denote it by xn . 
Denote x-•x-1 · · · x-I  (n terms) by x-n .  Let x0 = 1 ,  the identity of G. 
This new notation i s  pleasantly concise. Of  course, when we are dealing with 

specific groups, we shall use the natural (given) operation. For example, when the 
operation is +. the identity will be denoted by 0 and for any element a, the inverse a-1 
will be written -a and a +  a + ·  · · + a  (n > 0 terms) will be written na; -a - a · · · - a 
(n terms) will be written -na and Oa = 0. 

Proposition 2. Let G be a group and let a, b E  G .  The equations ax = b and ya = b 
have unique solutions for x ,  y E G. In particular, the left and right cancellation laws 
hold in G, i.e., 

(1) if au = av, then u = v, and 
(2) if ub = vb, then u = v. 

Proof: We can solve ax = b by multiplying both sides on the left by a -1 and 
simplifying to get x = a-1b. The uniqueness of x follows because a-1 is unique. 
Similarly, if ya = b, y = ba-1 • If au = av, multiply both sides on the left by a-1 and 
simplify to get u = v .  Similarly, the right cancellation law holds. 

One consequence of Proposition 2 is that if a is any element of G and for some 
b E G, ab = e or ba = e, then b = a-1 , i.e., we do not have to show both equations 
hold. Also, if for some b E G, ab = a  (or ba = a), then b must be the identity of G, 
i.e., we do not have to check bx = xb = x for all x E G. 

Definition. For G a group and x E G define the order of x to be the smallest positive 
integer n such that xn = 1 ,  and denote this integer by lx 1 .  In this case x is said to be of 
order n. If no positive power of x is the identity, the order of x is defined to be infinity 
and x is said to be of infinite order. 

The symbol for the order of x should not be confused with the absolute value symbol 
(when G � lR we shall be careful to distinguish the two). It may seem injudicious to 
choose the same symbol for order of an element as the one used to denote the cardinality 
(or order) of a set, however, we shall see that the order of an element in a group is the 
same as the cardinality of the set of all its (distinct) powers so the two uses of the word 
"order" are naturally related. 

Examples 

20 

(1) An element of a group has order 1 if and only if it is the identity. 
(2) In the additive groups Z, Q, JR. or C every nonzero (i.e., nonidentity) element has 

infinite order. 
(3) In the multiplicative groups JR. - {0} or Q - {0} the element -1  has order 2 and all 

other nonidentity elements have infinite order. 

(4) In the additive group Z/9Z the element 6 has order 3, since 6 # 6, 6+6 = 12 = 3 # 6, 
but 6 + 6 + 6 = 18 = 6, the identity in this group. Recall that in an additive group the 
powers of an element are the integer multiples of the element. Similarly, the order of 

the element 5 is 9, since 45 is the smallest positive multiple of 5 that is divisible by 9. 
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(5) In the multiplicative group (7l/77l) x ,  the powers of the element 2 are 2. 4. 8 = 1, the 
identity in this group, so 2 has order 3. Similarly, the element 3 has order 6, since 36 

is the smallest positive power of 3 that is congruent to 1 modulo 7. 

Definition. Let G = {gi ,  gz , . . .  , gn }  be a finite group with g1 = 1. The multiplica
tion table or group table of G is the n x n matrix whose i, j entry is the group element 
g; gj. 

For a finite group the multiplication table contains, in some sense, all the information 
about the group. Computationally, however, it is an unwieldly object (being of size the 
square of the group order) and visually it is not a very useful object for determining 
properties of the group. One might think of a group table as the analogue of having a 
table of all the distances between pairs of cities in the country. Such a table is useful 
and, in essence, captures all the distance relationships, yet a map (better yet, a map with 
all the distances labelled on it) is a much easier tool to work with. Part of our initial 
development of the theory of groups (finite groups in particular) is directed towards a 
more conceptual way of visualizing the internal structure of groups. 

E X E R C I S E S  

Let G be a group. 

1. Determine which of the following binary operations are associative: 
(a) the operation * on 7l defined by a * b = a - b 
(b) the operation * on IR defined by a * b = a + b + ab 

( )  h · ffll d fi  d b  b 
a + b 

c t e operatmn • on � e ne y a • = -5 -
(d) the operation * on 7l x 7l defined b y  (a , b) * (c. d) = (ad + be, bd) 

(e) the operation * on Q - {0} defined by a * b = � ·  
2 .  Decide which of the binary operations i n  the preceding exercise are commutative. 

3. Prove that addition of residue classes in 7lfn7l is associative (you may assume it is well 
defined). 

4. Prove that multiplication of residue classes in 7lfn7l is associative (you may assume it is 
well defined). 

5. Prove for all n > 1 that 7lf n7l is not a group under multiplication of residue classes. 

6. Determine which of the following sets are groups under addition: 
(a) the set of rational numbers (including 0 = 0/1 )  in lowest terms whose denominators 

are odd 
(b) the set of rational numbers (including 0 = 0/1 )  in lowest terms whose denominators 

are even 
(c) the set of rational numbers of absolute value < 1 
(d) the set of rational numbers of absolute value � 1 together with 0 
(e) the set of rational numbers with denominators equal to 1 or 2 
(t) the set of rational numbers with denominators equal to 1 ,  2 or 3 .  

7.  Let G = {x  E IR I 0 � x < 1 }  and for x ,  y E G let x * y be  the fractional part of  x + y 
(i.e., x * y = x + y - [x + y] where [a] is the greatest integer less than or equal to a). 
Prove that * is a well defined binary operation on G and that G is an abelian group under 
* (called the real numbers mod 1).  
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8. Let G = {z E c I zn = 1 for some n E z+ } .  
(a) Prove that G is a group under multiplication (called the group of roots of unity in C). 
(b) Prove that G is not a group under addition. 

9. Let G = {a + b.J2 E lR I a, b E  Q}. 
(a) Prove that G is a group under addition. 
(b) Prove that the nonzero elements of G are a group under multiplication. ["Rationalize 

the denominators" to find multiplicative inverses.] 

10. Prove that a finite group is abelian if and only if its group table is a symmetric matrix. 

11. Find the orders of each element of the additive group /Z I 12/Z. 

12. Find the orders of the following elements of the multiplicative group (IZ/1 2/ZV : I, - 1 ,  
5, 7, --7, TI. 

13. Find the orders of the following elements of the additive group /Zj36/Z: I, 2, 6, 9, 10, 1 2, 
- 1 , - 10. - 18. 

14. Find the orders of the following elements of the multiplicative group (/Zj361ZV : I, - 1 ,  
5, TI, - 1 3, 17 . 

15 Pr h ( )-t -t -t -t c 11 G . ove t at ataz . . . an = an an_1 • • • a1 10r a at , az, . . .  , an E . 
16. Let x be an element of G. Prove that x2 = 1 if and only if lx I is either 1 or 2. 

17. Letx be an element of G. Prove thatif lx l  = n for some positive integern then x-t = xn-t . 
18. Let x and y be elements of G. Prove that xy = yx if and only if y-t xy = x if and only if 

x-ty-txy = 1 .  

19. Let X E G and let a,  b E z+. 
(a) Prove that xa+h = xaxh and (x0)h = xah . 
(b) Prove that (x0)- 1 = x-a .  
(c) Establish part (a) for arbitrary integers a and b (positive, negative or zero). 

20. For x an element in G show that x and x-t have the same order. 

21. Let G be a finite group and let x be an element of G of order n.  Prove that if n is odd, then 
x = (x2)k for some k. 

22. Ifx and g are elements of the group G, prove that lx l = lg-1xg l .  Deduce that labl = lha l 
for all a, b E  G. 

23. Suppose x E G and lx l = n < oo. If n = st for some positive integers s and t, prove that 
lxs l = t .  

24. If a and b are commuting elements of G, prove that (ab)n = anbn for all n E /Z. [Do this 
by induction for positive n first.] 

25. Prove that if x2 = 1 for all x E G then G is abelian. 

26. Assume H is a nonempty subset of (G, •) which is closed under the binary operation on 
G and is closed under inverses, i.e., for all h and k E H, hk and h -t E H. Prove that H is 
a group under the operation * restricted to H (such a subset H is called a subgroup of G). 

27. Prove that if x is an element of the group G then {xn I n E /Z} is a subgroup (cf. the 
preceding exercise) of G (called the cyclic subgroup of G generated by x). 

28. Let (A ,  •) and (B, <>) be groups and let A x B be their direct product (as defined in Example 
6). Verify all the group axioms for A x B :  

22 

(a) prove that the associative law holds: for all (a; , b; ) E A x B, i = 1 ,  2, 3 
(at .  ht)[(az , bz) (a3 , b3)] = [(at . bt )(az.  bz)] (a3 , b3 ) , 
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(b) prove that ( 1 ,  1) is the identity of A x B, and 
(c) prove that the inverse of (a , b) is (a - 1 , b-1 ) . 

29. Prove that A x B is an abelian group if and only if both A and B are abelian. 

30. Prove that the elements (a , 1 )  and ( 1 ,  b) of A x B commute and deduce that the order of 
(a, b) is the least common multiple of Ia I and lb l .  

31. Prove that any finite group G of even order contains an element of order 2 .  [Let t (G) be 
the set {g E G 1 g =ft g-1 }. Show that t (G) has an even number of elements and every 
nonidentity element of G - t (G) has order 2.] 

· 
32. If x is an element of finite order n in G, prove that the elements 1 ,  x ,  x2 , . . .  , xn-1 are all 

distinct. Deduce that lx I � I G 1 .  

33. Let x be an element of finite order n i n  G .  
(a) Prove that i f  n i s  odd then xi =ft x-i for all i = 1 ,  2 ,  . . .  , n - 1 .  
(b) Prove that i f  n = 2k and 1 � i < n then xi = x-i if and only i f  i = k. 

34. If x is an element of infinite order in G, prove that the elements xn , n E Z are all distinct. 

35. If x is an element of finite order n in G, use the Division Algorithm to show that any 
integral power of x equals one of the elements in the set { 1 ,  x ,  x2 , • • •  , xn- 1 }  (so these are 
all the distinct elements of the cyclic subgroup ( cf. Exercise 27 above) of G generated by 
x). 

36. Assume G = { 1 ,  a, b, c} is a group of order 4 with identity 1 .  Assume also that G has no 
elements of order 4 (so by Exercise 32, every element has order � 3). Use the cancellation 
laws to show that there is a unique group table for G. Deduce that G is abelian. 

1 .2 DIHEDRAL GROUPS 

An important family of examples of groups is the class of groups whose elements are 
symmetries of geometric objects. The simplest subclass is when the geometric objects 
are regular planar figures. 

For each n E z+, n ::=: 3 let D211 be the set of symmetries of a regular n-gon, where 
a symmetry is any rigid motion of the n-gon which can be effected by taking a copy 
of the n-gon, moving this copy in any fashion in 3-space and then placing the copy 
back on the original n-gon so it exactly covers it. More precisely, we can describe the 
symmetries by first choosing a labelling of the n vertices, for example as shown in the 
following figure. 

2 

3 
/ 

/ 
/ 
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Then each symmetry s can be described uniquely by the corresponding permutation a 
of { 1 ,  2, 3 ,  . . . , n }  where if the symmetry s puts vertex i in the place where vertex j 
was originally, then a is the permutation sending i to j. For instance, if s is a rotation 
of 2rr In radians clockwise about the center of the n -gon, then a is the permutation 
sending i to i + 1, 1 � i � n - 1, and a (n) = 1 .  Now make D2n into a group by 
defining s t for s ,  t E D2n to be the symmetry obtained by first applying t then s to 
the n-gon (note that we are viewing symmetries as functions on the n-gon, so st is just 
function composition - read as usual from right to left). If s, t effect the permutations 
a ,  r, respectively on the vertices, then st effects a o -r .  The binary operation on D2n 
is associative since composition of functions is associative. The identity of D2n is the 
identity symmetry (which leaves all vertices fixed), denoted by 1, and the inverse of 
s E D2n is the symmetry which reverses all rigid motions of s (so if s effects permutation 
a on the vertices, s -1  effects a-1  ). In the next paragraph we show 

ID2n l  = 2n 

and so D2n is called the dihedral group of order 2n. In some texts this group is written 
Dn ; however, D2n (where the subscript gives the order of the group rather than the 
number of vertices) is more common in the group theory literature. 

To find the order I D2n I observe that given any vertex i ,  there is a symmetry which 
sends vertex 1 into position i .  Since vertex 2 is adjacent to vertex 1 ,  vertex 2 must 
end up in position i + 1 or i - 1 (where n + 1 is 1 and 1 - 1 is n, i.e., the integers 
labelling the vertices are read mod n ). Moreover, by following the first symmetry by a 
reflection about the line through vertex i and the center of the n-gon one sees that vertex 
2 can be sent to either position i + 1 or i - 1 by some symmetry. Thus there are n · 2 
positions the ordered pair of vertices 1 ,  2 may be sent to upon applying symmetries. 
Since symmetries are rigid motions one sees that once the position of the ordered pair 
of vertices 1, 2 has been specified, the action of the symmetry on all remaining vertices 
is completely determined. Thus there are exactly 2n symmetries of a regular n-gon. We 
can, moreover, explicitly exhibit 2n symmetries. These symmetries are the n rotations 
about the center through 2rr i In radian, 0 � i � n - 1 ,  and the n reflections through the 
n lines of symmetry (if n is odd, each symmetry line passes through a vertex and the 
mid-point of the opposite side; if n is even, there are n 12 lines of symmetry which pass 
through 2 opposite vertices and nl2 which perpendicularly bisect two opposite sides). 
For example, if n = 4 and we draw a square at the origin in an x, y plane, the lines of 
symmetry are 

' 
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the lines x = 0 (y-axis), y = 0 (x-axis), y = x and y = -x (note that "reflection" 
through the origin is not a reflection but a rotation of n radians). 

Since dihedral groups will be used extensively as an example throughout the text 
we fix some notation and mention some calculations which will simplify future com
putations and assist in viewing D2n as an abstract group (rather than having to return to 
the geometric setting at every instance). Fix a regular n-gon centered at the origin in an 
x ,  y plane and label the vertices consecutively from 1 to n in a clockwise manner. Let r 
be the rotation clockwise about the origin through 2n j n radian. Let s be the reflection 
about the line of symmetry through vertex 1 and the origin (we use the same letters for 
each n, but the context will always make n clear). We leave the details of the following 
calculations as an exercise (for the most part we shall be working with D6 and Ds, so 
the reader may wish to try these exercises for n = 3 and n = 4 first): 

(1) 1 ,  r, r2 , • . .  , rn-I are all distinct and rn = 1 ,  so lr l = n. 
(2) ls i = 2. 
(3) s f=. r; for any i .  
(4) sri f=. sri , for all 0 _:::: i ,  j _:::: n - 1 with i f=. j ,  so 

i.e., each element can be written uniquely in the form skri for some k = 0 or 
1 and 0 _:::: i _:::: n - 1 .  

(5) rs = sr-1 • [First work out what permutation s effects on { 1 ,  2, . . .  , n }  and 
then work out separately what each side in this equation does to vertices I 
and 2.] This shows in particular that r and s do not commute so that D2n is 
non-abelian. 

(6) ri s = sr-i , for all 0 _:::: i _:::: n. [Proceed by induction on i and use the fact that 
ri+I s = r (ri s) together with the preceding calculation.] This indicates how to 
commute s with powers of r .  

Having done these calculations, we now observe that the complete multiplication 
table of D2n can be written in terms r and s alone, that is, all the elements of D2n have a 
(unique) representation in the form skri , k = 0 or 1 and 0 :::: i _:::: n - I ,  and any product 
of two elements in this form can be reduced to another in the same form using only 
"relations" ( 1 ), (2) and (6) (reducing all exponents mod n). For example, if n = 12, 

(sr9) (sr6) = s (r9s)r6 
= s (sr-9)r6 

= s
2
r-9+6 = r-3 = r9 . 

Generators and Relations 

The use of the generators r and s for the dihedral group provides a simple and succinct 
way of computing in D2n. We can similarly introduce the notions of generators and 
relations for arbitrary groups. It is useful to have these concepts early (before their 
formal justification) since they provide simple ways of describing and computing in 
many groups. Generators will be discussed in greater detail in Section 2.4, and both 
concepts will be treated rigorously in Section 6.3 when we introduce the notion of free 
groups. 
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A subset S of elements of a group G with the property that every element of G 
can be written as a (finite) product of elements of S and their inverses is called a set of 
generators of G. We shall indicate this notationally by writing G = ( S ) and say G 
is generated by S or S generates G. For example, the integer 1 is a generator for the 
additive group Z of integers since every integer is a sum of a finite number of + 1 's and 
- 1 's, so Z = ( 1 ) .  By property (4) of D2n the set S = {r, s } is a set of generators of 
Dzn , so Dzn = ( r, s ) . We shall see later that in a finite group G the set S generates 
G if every element of G is a finite product of elements of S (i.e., it is not necessary to 
include the inverses of the elements of S as well). 

Any equations in a general group G that the generators satisfy are called relations 
in G. Thus in D2n we have relations: rn = I ,  s2 = 1 and rs = sr- 1 • Moreover, in 
D2n these three relations have the additional property that any other relation between 
elements of the group may be derived from these three (this is not immediately obvious; 
-it follows from the fact that we can determine exactly when two group elements are 
equal by using only these three relations). 

In general, if some group G is generated by a subset S and there is some collection 
of relations, say R1 . Rz, . . . •  Rm (here each R; is an equation in the elements from 
S U { 1 } )  such that any relation among the elements of S can be deduced from these, we 
shall call these generators and relations a presentation of G and write 

G = ( S I R1 , Rz , . . .  , Rm ) . 
One presentation for the dihedral group D2n (using the generators and relations above) 
is then 

D2n = ( r, s I rn = s2 = I .  rs = sr-I ) . (1 . 1 )  

We shall see that using this presentation to describe D2n (rather than always reverting 
to the original geometric description) will greatly simplify working with these groups. 

Presentations give an easy way of describing many groups, but there are a number of 
subtleties that need to be considered. One of these is that in an arbitrary presentation it 
may be difficult (or even impossible) to tell when two elements of the group (expressed 
in terms of the given generators) are equal. As a result it may not be evident what the 
order of the presented group is, or even whether the group is finite or infinite� For 
example, one can show that ( Xt ,  Yt I xf = yf = (XtYt )2 = 1 )  is a presentation of a 

group of order 4, whereas ( xz , yz I xi_ = y:j_ = (xzyz)3 = 1 ) is a presentation of an 
infinite group (cf. the exercises). 

Another subtlety is that even in quite simple presentations, some "collapsing" may 
occur because the relations are intertwined in some unobvious way, i.e. , there may be 
"hidden," or implicit, relations that are not explicitly given in the presentation but rather 
are consequences of the specified ones. This collapsing makes it difficult in general to 
determine even a lower bound for the size of the group being presented. For example, 
suppose one mimicked the presentation of Dzn in an attempt to create another group by 
defining: 

X 2n = ( X ' y I xn 
= y2 = 1 ' xy = y x2 ) • ( 1 .2) 

The "commutation" relation xy = yx2 determines how to commute y and x (i.e., how 
to "move" y from the right of x to the left), so that just as in the group D2n every element 
in this group can be written in the form yk xi with all the powers of y on the left and all 
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the powers of x on the right. Also, by the first two relations any powers of x and y can be 
reduced so that i lies between 0 and n - 1 and k is 0 or 1 .  One might therefore suppose 
that X2n is again a group of order 2n . This is not the case because in this group there is 
a "hidden" relation obtained from the relation x = xy2 (since y2 = 1 ) by applying the 
commutation relation and the associative law repeatedly to move the y's to the left: 

x = xl = (xy)y = (yx2)y = (yx) (xy) = (yx) (yx2) 
= y(xy)x2 = y(yx2)x2 = lx4 = x4. 

Since x4 
= X it follows by the cancellation laws that x3 = 1 in x2n . and from the 

discussion above it follows that X 2n has order at most 6 for any n .  Even more collapsing 
may occur, depending on the value of n (see the exercises). 

As another example, consider the presentation 

( 1 .3) 

In this case it is tempting to guess that Y is a group of order 12, but again there are 
additional implicit relations. In fact this group Y degenerates to the trivial group of 
order 1 ,  i.e., u and v satisfy the additional relations u = 1 and v = 1 (a proof is outlined 
in the exercises). 

This kind of collapsing does not occur for the presentation of D2n because we 
showed by independent (geometric) means that there is a group of order 2n with gen
erators r and s and satisfying the relations in ( 1 ). As a result, a group with only these 
relations must have order at least 2n . On the other hand, it is easy to see (using the 
same sort of argument for X2n above and the commutation relation rs = sr-1 ) that any 
group defined by the generators and relations in ( 1 )  has order at most 2n . It follows that 
the group with presentation ( 1 ) has order exactly 2n and also that this group is indeed 
the group of symmetries of the regular n-gon. 

The additional information we have for the presentation ( 1 )  is the existence of a 
group of known order satisfying this information. In contrast, we have no independent 
knowledge about any groups satisfying the relations in either (2) or (3). Without such 
independent "lower bound" information we might not even be able to determine whether 
a given presentation just describes the trivial group, as in (3). 

While in general it is necessary to be extremely careful in prescribing groups by 
presentations, the use of presentations for known groups is a powerful conceptual and 
computational tool. Additional results about presentations, including more elaborate 
examples, appear in Section 6.3. 

E X E R C I S E S  

In these exercises, D2n has the usual presentation D2n = ( r, s I rn = s2 = I ,  r s = s r -1  ) . 
1. Compute the order of each of the elements in the following groups: 

(a) D6 (b) Ds (c) Dw. 

2. Use the generators and relations above to show that if  x is  any element of D2n which is 
not a power of r, then rx = xr- 1 •  

3. Use the generators and relations above to show that every element of D2n which i s  not a 
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power of r has order 2. Deduce that D2n is generated by the two elements s and sr, both 
of which have order 2. 

4. If n = 2k is even and n :::: 4, show that z = rk is an element of order 2 which commutes 
with all elements of D2n .  Show also that z is the only nonidentity element of D2n which 
commutes with all elements of D2n · [cf. Exercise 33 of Section 1 .] 

S. If n is odd and n :::: 3, show that the identity is the only element of D2n which commutes 
with all elements of D2n ·  [cf. Exercise 33 of Section 1 .] 

6. Let x and y  be elements of order 2 in any group G. Prove that if t = xy then tx = xt-1 
(so that if n = lxy l < oo then x, t satisfy the same relations in G as s, r do in D2n). 

7. Show that ( a, b I a2 = b2 = (ab)n = I ) gives a presentation for D2n in terms of the two 
generators a = s and b = sr of order 2 computed in Exercise 3 above. [Show that the 
relations for r and s follow from the relations for a and b and, conversely, the relations for 
a and b follow from those for r and s . ]  

8. Find the order of the cyclic subgroup of D2n generated by r (cf. Exercise 27 of Section I) .  

In each of Exercises 9 to 13  you can find the order of the group of rigid motions in R3 (also called 
the group of rotations) of the given Platonic solid by following the proof for the order of D2n : 
find the number of positions to which an adjacent pair of vertices can be sent. Alternatively, 
you can find the number of places to which a given face may be sent and, once a face is fixed, 
the number of positions to which a vertex on that face may be sent. 

9. Let G be the group of rigid motions in R3 of a tetrahedron. Show that IG I  = 12. 

10. Let G be the group of rigid motions in R3 of a cube. Show that IG I  = 24. 

11. Let G be the group of rigid motions in R3 of an octahedron. Show that 1 G 1 = 24. 

12. Let G be the group of rigid motions in R3 of a dodecahedron. Show that IG I  = 60. 

13. Let G be the group of rigid motions in R3 of an icosahedron. Show that IG I  = 60. 

14. Find a set of generators for Z. 

15. Find a set of generators and relations for Z/ n/Z. 

16. Show that the group ( XJ ,  YI I Xf = Yf = (xi Yd = 1 )  is the dihedral group D4 (where 
XJ may be replaced by the letter r and y1 by s ) . [Show that the last relation is the same as: 

-1 ] XJYI = YIXJ · 
17. Let X2n be the group whose presentation is displayed in (1 .2). 

(a) Show that if n = 3k, then X2n has order 6, and it has the same generators and relations 
as D6 when x is replaced by r and y by s. 

(b) Show that if (3, n) = 1 ,  then x satisfies the additional relation: x = 1 .  In this case 
deduce that X2n has order 2. [Use the facts that xn = 1 and x3 = 1 .] 

18. Let Y be the group whose presentation is displayed in ( 1 .3). 
(a) Show that v2 = v-1 • [Use the relation: v3 = 1 .] 

28 

(b) Show that v commutes with u3 . [Show that v2u3v = u3 by writing the left hand side 
as (v2u2) (uv) and using the relations to reduce this to the right hand side. Then use 
part (a).] 

(c) Show that v commutes with u.  [Show that u9 = u and then use part (b).] 
(d) Show that uv = 1 .  [Use part (c) and the last relation.] 
(e) Show that u = 1, deduce that v = 1, and conclude that Y = 1 .  [Use part (d) and the 

equation u4v3 = 1 .] 
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1 .3 SYM METRIC GROUPS 

Let Q be any nonempty set and let Sn be the set of all bijections from Q to itself (i.e. , 
the set of all permutations of Q). The set Sn is a group under function composition: o .  
Note that o is  a binary operation on Sn since if cr : Q � Q and r : Q � Q are both 
bijections, then cr o T is also a bijection from Q to Q. Since function composition is 
associative in general, o is associative. The identity of Sn is the permutation 1 defined 
by l (a) = a, for all a E Q. For every permutation cr there is a (2-sided) inverse 
function, cr -t : Q � Q satisfying cr o cr -t = cr-t  o cr  = 1 .  Thus, all the group axioms 
hold for (Sn ,  o) .  This group is called the symmetric group on the set Q. It is important 
to recognize that the elements of Sn are the permutations of Q, not the elements of Q 
itself. 

In the special case when Q = { 1 ,  2, 3 ,  . . . , n} ,  the symmetric group on Q is de
noted Sn , the symmetric group of degree n. 1 The group Sn will play an important role 
throughout the text both as a group of considerable interest in its own right and as a 
means of illustrating and motivating the general theory. 

First we show that the order of Sn is n ! . The permutations of { 1 ,  2, 3 ,  . . .  , n} are 
precisely the injective functions of this set to itself because it is finite (Proposition 0. 1 )  
and we can count the number of injective functions. A n  injective function cr can send 
the number 1 to any of the n elements of { 1 ,  2, 3 ,  . . .  , n } ;  cr (2) can then be any one of 
the elements of this set except cr ( l ) (so there are n - 1 choices for cr (2)); cr (3) can be 
any element except cr ( l )  or cr (2) (so there are n - 2 choices for cr (3)), and so on. Thus 
there are precisely n · (n - 1 )  · (n - 2) . . .  2 · 1 = n ! possible injective functions from 
{ 1 ,  2, 3 ,  . . . , n }  to itself. Hence there are precisely n !  permutations of { 1 ,  2, 3 ,  . . . , n} 
so there are precisely n !  elements in Sn . 

We now describe an efficient notation for writing elements cr of Sn which we shall 
use throughout the text and which is called the cycle decomposition. 

A cycle is a string of integers which represents the element of Sn which cyclically 
permutes these integers (and fixes all other integers). The cycle (a1 a2 . . •  am ) is the 
permutation which sends a; to ai+l •  1 ,::: i ,::: m - 1 and sends am to a1 . For example 
(2 1 3) is the permutation which maps 2 to 1 ,  1 to 3 and 3 to 2. In general, for each 
cr E Sn the numbers from 1 to n will be rearranged and grouped into k cycles of the 
form 

from which the action of cr on any number from 1 to n can easily be read, as follows. 
For any x E { 1 ,  2, 3 ,  . . . , n} first locate x in the above expression. If x is not followed 
immediately by a right parenthesis ( i.e., x is not at the right end of one of the k cycles), 
then cr (x) is the integer appearing immediately to the right of x. If x is followed by a 
right parenthesis, then cr (x) is the number which is at the start of the cycle ending with 
x ( i.e., if x = amp for some i ,  then cr (x) = am1_ 1 +t (where mo is taken to be 0)). We 
can represent this description of cr by 

1 We shall see in Section 6 that the structure of Sn depends only on the cardinality of !.1 , not on the 
particular elements of !.1 itself, so if !.1 is any finite set with n elements, then Sn "looks like" S, . 
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C 
al  � a2 � . . .  � ami "") 

The product of all the cycles is called the cycle decomposition of a .  
We now give an algorithm for computing the cycle decomposition of an element a 

of S" and work through the algorithm with a specific permutation. We defer the proof 
of this algorithm and full analysis of the uniqueness aspects of the cycle decomposition 
until Chapter 4. 

Let n = 1 3  and let a E S13 be defined by 
a (l )  = 1 2, a (2) = 13 ,  a (3) = 3 ,  

a (6) = 9, a (7) = 5,  a (8) = 10, 

a (l l) = 7, a ( 1 2) = 8,  a (1 3) = 2. 

a (4) = 1 ,  

a (9) = 6, 

a (5) = 1 1 , 

a ( lO) = 4, 

Cycle Decomposition Algorithm 

Method Example 

To start a new cycle pick the smallest element of { 1 ,  2, . . . .  n}  ( 1  
which h as  not yet appeared in a previous cycle - call it a (if 
you arc just starting, a = 1) ;  begin the new cycle: (a 

Read off a (a) from the given description of a - call it b. If a(l )  = 12 = b, 12 # 1 so write: 
b = a, close the cycle with a rifcht parenthesis (without writing 
b down); this completes a eye e - return to step 1 .  If b # a, ( 1 12  

write b next to  a in this cycle: (a  b 

Read off a (b) from the given description of a - call it c. If a ( l2) = 8, 8 # 1 so continue the 
c = a, close the cycle with a right parenthesis to comElete the cycle as: ( 1 12  8 
cycle - return to step 1 .  If c # a, write c next to in this 
cycle: (a b c  Repeat this step using the number c as the new 
value for b until the cycle closes. 

Naturally this process stops when all the numbers from { 1 ,  2, . . . , n }  have appeared 
in some cycle. For the particular a in the example this gives 

a = ( 1  1 2  8 10 4) (2 1 3)(3) (5 1 1  7) (6 9) . 

The length of a cycle is the number of integers which appear in it. A cycle of length 
t is called a t-cycle. Two cycles are called disjoint if they have no numbers in common. 
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Thus the element a above is the product of 5 (pairwise) disjoint cycles: a 5-cycle, a 
2-cycle, a 1 -cycle, a 3-cycle, and another 2-cycle. 

Henceforth we adopt the convention that 1-cycles will not be written. Thus if some 
integer, i ,  does not appear in the cycle decomposition of a permutation r it is understood 
that r(i )  = i ,  i.e., that r fixes i .  The identity permutation of Sn has cycle decomposition 
( 1 ) (2) . . .  (n) and will be written simply as 1 .  Hence the final step of the algorithm is: 

Cycle Decomposition Algorithm (cont.) 

Final Step: Remove all cycles of length 1 

The cycle decomposition for the particular a in the example is therefore 

a = ( 1 12 8 10  4) (2 1 3)(5 1 1  7) (6 9) 

This convention has the advantage that the cycle decomposition of an element r of 
Sn is also the cycle decomposition of the permutation in Sm for m :=:: n which acts as r 
on { 1 ,  2, 3, . . .  , n} and fixes each element of {n + 1 ,  n + 2, . . . , m} .  Thus, for example, 
( 1 2) is the permutation which interchanges 1 and 2 and fixes all larger integers whether 
viewed in s2. s3 or s4. etc. 

As another example, the 6 elements of S3 have the following cycle decompositions: 

The group S3 

Values of a; Cycle Decomposition of a; 

01 (1)  = 1 ,  01 (2) = 2, 0} (3) = 3 1 
az (1)  = 1 ,  o"2 (2) = 3, az (3) = 2 (2 3)  
03 ( 1) = 3,  OJ (2) = 2, OJ (3) = } (I 3) 
a4( 1 )  = 2, a4 (2) = I ,  a4(3) = 3 ( 1 2) 
a5 (1 )  = 2, as (2) = 3, a5 (3) = 1 ( 1 2 3) 

For any a E Sn , the cycle decomposition of a - 1 is obtained by writing the num
bers in each cycle of the cycle decomposition of a in reverse order. For example, if 
a = ( 1 12  8 10 4) (2 1 3) (5 1 ]  7) (6 9) is the element of sl3 described before then 

a -1 = (4 10 8 1 2  1 ) ( 1 3  2) (7 1 1  5) (9 6) . 

Computing products in Sn is straightforward, keeping in mind that when computing 
a o r in Sn one reads the permutations from right to left. One simply "follows" the 
elements under the successive permutations. For example, in the product ( 1  2 3) o 
( 1  2) (3 4) the number 1 is sent to 2 by the first permutation, then 2 is sent to 3 by 
the second permutation, hence the composite maps 1 to 3. To compute the cycle 
decomposition of the product we need next to see what happens to 3. It is sent first to 4, 
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then 4 is fixed, so 3 is mapped to 4 by the composite map. Similarly, 4 is first mapped to 
3 then 3 is mapped to 1 ,  completing this cycle in the product: ( 1  3 4) . Finally, 2 is sent 
to 1 ,  then 1 is sent to 2 so 2 is fixed by this product and so ( 1  2 3) o ( 1  2)(3 4) = ( 1  3 4) 
is the cycle decomposition of the product 

As additional examples, 

( 12) 0 ( 13) = (1 3 2) 

In particular this shows that 

and (1 3) 0 ( 1 2) = (1 2 3) . 

S" is a non-abelian group for all n � 3. 

Each cycle (a!  a2 . . . am ) in a cycle decomposition can be viewed as the permutation 
which cyclically permutes a1 , az , . . .  , am and fixes all other integers. Since disjoint 
cycles permute numbers which lie in disjoint sets it follows that 

disjoint cycles commute. 

Thus rearranging the cycles in any product of disjoint cycles (in particular, in a cycle 
decomposition) does not change the permutation. 

Also, since a given cycle, (a!  a2 . . .  am) .  permutes {a! , az , . . .  , am } cyclically, the 
numbers in the cycle itself can be cyclically permuted without altering the permutation, 
i.e., 

(a!  az . . . am ) = (az a3 . . .  am a1 ) = (a3 a4 . . . am a1 az) = . . . 

= (am a1 az . . . am-! ) . 

Thus, for instance, ( 1  2) = (2 1) and ( 1  2 3 4) = (3 4 1 2) . By convention, the smallest 
number appearing in the cycle is usually written first 

One must exercise some care working with cycles since a permutation may be 
written in many ways as an arbitrary product of cycles. For instance, in S3 , (1 2 3) = 

( 1 2)(2 3) = ( 1  3) ( 1  3 2) ( 1  3) etc. But, (as we shall prove) the cycle decomposition of 
each permutation is the unique way of expressing a permutation as a product of disjoint 
cycles (up to rearranging its cycles and cyclically permuting the numbers within each 
cycle). Reducing an arbitrary product of cycles to a product of disjoint cycles allows 
us to determine at a glance whether or not two permutations are the same. Another 
advantage to this notation is that it is an exercise (outlined below) to prove that the order 

of a permutation is the l. c.m. of the lengths of the cycles in its cycle decomposition. 

1. Let a be the permutation 

1 1--+ 3 

and let r be the permutation 

E X E R C I S E S 

1 I--+ 5 2 I--+ 3 5 I--+ 1 .  

Find the cycle decompositions of each of the following permutations: a ,  r ,  a2, a r ,  ra, 
and r2a .  
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2. Let a be the permutation 

1 t-+ 13  2 r-+ 2 3 t-+ 15 4 t-+ 14 5 t-+ 10 

6 r-+ 6 7 t-+ 1 2  8 r-+ 3  9 r-+ 4  10 t-+ 1 

1 1  t-+ 7 1 2  t-+ 9 1 3  t-+ 5 14 t-+ 1 1  15  t-+ 8 

and let T be the permutation 

1 t-+ 14 2 r-+ 9 3 t-+ 10  4 r-+ 2  5 t-+ 1 2  

6 r-+ 6 7 r-+ 5  8 t-+ 1 1  9 t-+ 1 5  10 r-+ 3  

1 1  t-+ 8 12 t-+ 7 13 t-+ 4 14 t-+ 1 1 5  t-+ 13 .  

Find the cycle decompositions of the following permutations: a,  T, a2, aT ,  ra, and r2a .  
3. For each of the permutations whose cycle decompositions were computed in the preceding 

two exercises compute its order. 

4. Compute the order of each of the elements in the following groups: (a) S3 (b) S4. 

5. Find the order of ( 1  1 2  8 1 0  4) (2 13) (5 1 1  7) (6 9) . 

6. Write out the cycle decomposition of each element of order 4 in S4. 

7. Write out the cycle decomposition of each element of order 2 in S4. 

8. Prove that if Q = { 1 .  2, 3, . . .  } then Sn is an infinite group (do not say oo !  = oo). 
9. (a) Let a be the 12-cycle ( 1  2 3 4 5 6 7 8 9 1 0  1 1  1 2) .  For which positive integers i is 

ai also a 12-cycle? 
(b) Let r be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers i is ri also an 

8-cycle? 
(c) Let w be the 14-cycle ( 1  2 3 4 5 6 7 8 9 10 1 1  12 13 14). For which positive integers 

i is wi also a 14-cycle? 

10. Prove that if a is the m-cycle (a I az . . .  am ),  then for all i E { 1 ,  2, . . .  , m},  ai (ak) = ak+i • 
where k + i is replaced by its least residue mod m when k + i > m. Deduce that Ia I = m. 

11. Let a be the m-cycle ( 1  2 . . .  m).  Show that ai is also an m-cycle if and only if i is 
relatively prime to m. 

12. (a) If r = ( 1  2)(3 4) (5 6) (7 8)(9 10) determine whether there is a n-cycle a (n :=:::: 10) 
with r = ak for some integer k. 

(b) If r = (1 2)(3 4 5) determine whether there is an n-cycle a (n ::::: 5) with r = ak for 
some integer k. 

13. Show that an element has order 2 in Sn if and only if its cycle decomposition is a product 
of commuting 2-cycles. 

14. Let p be a prime. Show that an element has order p in Sn if and only if its cycle decom
position is a product of commuting p-cycles. Show by an explicit example that this need 
not be the case if p is not prime. 

15. Prove that the order of an element in Sn equals the least common multiple of the lengths 
of the cycles in its cycle decomposition. [Use Exercise 10 and Exercise 24 of Section 1 .] 

16. Show that if n :=:::: m then the number of m-cycles in Sn is given by 

n (n - l ) (n - 2) . . .  (n - m + 1 )  

m 
[Count the number of ways of forming an m-cycle and divide by the number of represen
tations of a particular m-cycle.] 
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17. Show that if n ::::: 4 then the number of permutations in Sn which are the product of two 
disjoint 2-cycles is n (n - 1)(n - 2) (n - 3)/8. 

18. Find all numbers n such that Ss contains an element of order n .  [Use Exercise 15.] 

19. Find all numbers n such that S7 contains an element of order n.  [Use Exercise 15.] 

20. Find a set of generators and relations for S3 . 

1 .4 MATRIX GROUPS 

In this section we introduce the notion of matrix groups where the coefficients come 
from fields. This example of a family of groups will be used for illustrative purposes 
in Part I and will be studied in more detail in the chapters on vector spaces. 

A field is the "smallest" mathematical structure in which we can perform all the 
arithmetic operations +, -, x ,  and 7 (division by nonzero elements), so in particular 
every nonzero element must have a multiplicative inverse. We shall study fields more 
thoroughly later and in this part of the text the only fields F we shall encounter will 
be Q, � and 'll/ p'll, where p is a prime. The example 'll/ p'll is a finite field, which, to 
emphasize that it is a field, we shall denote by F p · For the sake of completeness we 
include here the precise definition of a field. 

Definition. 
(1) Afield is a set F together with two binary operations + and · on F such that 

(F, +) is an abelian group (call its identity 0) and (F - {0} , ·) is also an abelian 
group, and the following distributive law holds: 

a · (b + c) = (a · b) + (a · c) , 

(2) For any field F let Fx = F - {0} . 
for all a, b, c E F. 

All the vector space theory, the theory of matrices and linear transformations and 
the theory of determinants when the scalars come from � is true, mutatis mutandis, 
when the scalars come from an arbitrary field F. When we use this theory in Part I we 
shall state explicitly what facts on fields we are assuming. 

For each n E z+ let G Ln (F) be the set of all n x n matrices whose entries come 
from F and whose determinant is nonzero, i.e., 

G Ln (F) = {A I A is an n x n matrix with entries from F and det(A) =F 0 }. 
where the determinant of any matrix A with entries from F can be computed by the 
same formulas used when F = �- For arbitrary n x n matrices A and B let AB be the 
product of these matrices as computed by the same rules as when F = R This product 
is associative. Also, since det(AB) = det(A) · det(B), it follows that if det(A) =F 0 
and det(B) =F 0, then det(AB) =F 0, so G Ln (F) is closed under matrix multiplication. 
Furthermore, det(A) =F 0 if and only if A has a matrix inverse (and this inverse can be 
computed by the same adjoint formula used when F = �). so each A E GLn (F) has 
an inverse, A-1 , in GLn (F) : 

AA-1 = A-1 A = /, 
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where I is the n x n identity matrix. Thus GL11 (F) is a group under matrix multipli
cation, called the general linear group of degree n.  

The following results will be proved in Part III but are recorded now for convenience: 
(1) if F is a field and I F I < oo, then I F I = pm for some prime p and integer m 
(2) if I F I  = q < oo, then I GLn (F) I = (q" - l ) (q" - q) (qn - q2) • • •  (q" - q"-1 ) .  

Let F b e  a field and let n E z+ . 
l. Prove that I GL2 (IF2) I  = 6. 

E X E R C I S E S 

2. Write out all the elements of G L2 (IF 2) and compute the order of each element. 

3. Show that GL2(IF2) is non-abelian. 

4. Show that if n is not prime then Z/ nZ is not a field. 

5. Show that GL11 (F) is a finite group if and only if F has a finite number of elements. 

6. If IF I  = q is finite prove that IGL11 (F) I < q"2 • 
7. Let p be a prime. Prove that the order of G L2 (IF P) is p4 - p3 - p2 + p (do not just quote 

the order formula in this section). [Subtract the number of 2 x 2 matrices which are not 
invertible from the total number of 2 x 2 matrices over IF P . You may use the fact that a 
2 x 2 matrix is not invertible if and only if one row is a multiple of the other.] 

8. Show that GL11 (F) is non-abelian for any n :=::: 2 and any F. 
9. Prove that the binary operation of matrix multiplication of 2 x 2 matrices with real number 

entries is associative. 

10. Let G = { (  � ; ) I a, b, c E lR, a #  0, c # 0}. 

(a) Compute the product of ( � !: ) and ( � 
matrix multiplication. 

b2 ) to show that G is closed under 
C2 

(b) Find the matrix inverse of ( � ; ) and deduce that G is closed under inverses. 

(c) Deduce that G is a subgroup of GL2(IR) (cf. Exercise 26, Section 1 ). 
(d) Prove that the set of elements of G whose two diagonal entries are equal (i.e., a = c) 

is also a subgroup of GL2(IR) . 

The next exercise introduces the Heisenberg group over the field F and develops some of its 
basic properties. When F = lR this group plays an important role in quantum mechanics 
and signal theory by giving a group theoretic interpretation (due to H. Weyl) of Heisenberg's 
Uncertainty Principle. Note also that the Heisenberg group may be defined more generally 
for example, with entries in Z. 

l l. Let H(F) = { (� � ! ) 1 a, b, c E F} - called the Heisenberg group over F. Let 

0 0 1 

X =  (� � ! ) and Y = ( � � ; ) be clements of H(F).  
0 0 1 0 0 1 

(a) Compute the matrix product XY and deduce that H (F) is closed under matrix mul
tiplication. Exhibit explicit matrices such that XY # YX (so that H(F) is always 
non-abelian). 
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(b) Find an explicit formula for the matrix inverse x-1 and deduce that H(F) is closed 
under inverses. 

(c) Prove the associative law for H(F) and deduce that H(F) is a group of order I FI 3 . 
(Do not assume that matrix multiplication is associative.) 

(d) Find the order of each element of the finite group H (Z/2Z) . 
(e) Prove that every nonidentity element of the group H (JR) has infinite order. 

1 .5 TH E QUATERNION GROUP 

The quatemion group, Q8, is  defined by 

Qg = { 1 ,  - 1 ,  i, -i, j, -j, k, -k} 
with product · computed as follows: 

1 · a = a  · I  = a , for all a E Qs 

(- 1) . (- 1) = 1 ,  (- 1 )  · a = a · (- 1 )  = -a , for all a E Q8 

i · i = j · j = k · k = - 1  

; . j = k, 
j · k  = i , 
k .  i = j, 

j . i = -k 
k .  j = -i 
i . k = -j. 

As usual, we shall henceforth write ab for a · b. It is tedious to check the associative 
law (we shall prove this later by less computational means), but the other axioms are 
easily checked. Note that Qs is a non-abelian group of order 8. 

E X E R C I S E S 

1. Compute the order of each of the elements in Qg. 

2. Write out the group tables- for S3 , Ds and Qg. 

3. Find a set of generators and relations for Qg. 

1 .6 HOMOMORPH ISMS AND ISOMORPH ISMS 

In this section we make precise the notion of when two groups .. look the same," that is, 
have exactly the same group-theoretic structure. This is the notion of an isomorphism 
between two groups. We first define the notion of a homomorphism about which we 
shall have a great deal more to say later. 

Definition. Let (G,  •) and (H, o) be groups. A map qJ :  G � H such that 

({J(X * y) = ({J(X) ¢ qJ (y) , 

is called a homomorphism. 

36 

for all x ,  y E G 
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When the group operations for G and H are not explicitly written, the homomor
phism condition becomes simply 

cp(xy) = cp(x)cp(y) 
but it is important to keep in mind that the product xy on the left is computed in G 
and the product cp(x)cp(y) on the right is computed in H. Intuitively, a map cp is a 
homomorphism if it respects the group structures of its domain and codomain. 

Definition. The map cp : G -+ H is called an isomorphism and G and H are said to 
be isomorphic or of the same isomorphism type, written G � H, if 

(1) cp is a homomorphism (i.e., cp(xy) = cp(x)cp(y)), and 
(2) cp is a bijection. 

In other words, the groups G and H are isomorphic if there is a bijection between 
them which preserves the group operations. Intuitively, G and H are the same group 
except that the elements and the operations may be written differently in G and H. 
Thus any property which G has which depends only on the group structure of G (i.e., 
can be derived from the group axioms - for example, commutativity of the group) also 
holds in H. Note that this formally justifies writing all our group operations as · since 
changing the symbol of the operation does not change the isomorphism type. 

Examples 

(1) For any group G, G � G. The identity map provides an obvious isomorphism but 
not, in general, the only isomorphism from G to itself. More generally, let Q be 
any nonempty collection of groups. It is easy to check that the relation � is an 
equivalence relation on Q and the equivalence classes are called isomorphism classes. 
This accounts for the somewhat symmetric wording of the definition of"isomorphism." 

(2) The exponential map exp : JR. �  JR.+ defined by exp(x) = e, where e is the base of 
the natural logarithm, is an isomorphism from (JR., +) to (JR.+ , x ) .  Exp is a bijection 
since it has an inverse function (namely loge ) and exp preserves the group operations 
since ex+y = ex eY .  In this example both the elements and the operations are different 
yet the two groups are isomorphic, that is, as groups they have identical structures. 

(3) In this example we show that the isomorphism type of a symmetric group depends 

only on the cardinality of the underlying set being permuted. 

Let n and Q be nonempty sets. The symmetric groups S"' and Sn are isomorphic 

if I n  I = I Q I . We can see this intuitively as follows: given that I n  I = IQ I ,  there is a 

bijection () from n onto Q. Think of the elements of n and Q as being glued together 

via 8, i.e., each x E n is glued to 8(x) E Q. To obtain a map 9 : S"' � Sn let a E S"' 
be a permutation of n and let 9(a) be the permutation of Q which moves the elements 

of Q in the same way a moves the corresponding glued elements of n; that is, if 

a (x) = y, for some x, y E n ,  then 9(a) (8 (x)) = ()(y) in Q. Since the set bijection () 

has an inverse, one can easily check that the map between symmetric groups also has 

an inverse. The precise technical definition of the map 9 and the straightforward, albeit 

tedious, checking of the properties which ensure 9 is an isomorphism are relegated to 

the following exercises. 

Conversely, if S"' � So_, then 1 n 1  = IQ I ;  we prove this only when the underlying 
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sets are finite (when both 11 and Q are infinite sets the proof is harder and will be 
given as an exercise in Chapter 4). Since any isomorphism between two groups G 
and H is, a priori, a bijection between them, a necessary condition for isomorphism 
is I SA I = i Sn i .  When 11 is a finite set of order n, then ! SA l  = n ! . We actually only 
proved this for Sn , however the same reasoning applies for s,.., . Similarly, if Q is a 
finite set of order m, then I Sn i = m ! .  Thus if s,.., and Sn are isomorphic then n !  = m !, 
so m = n, i.e., 1 11 1  = lfl l .  

Many more examples of isomorphisms will appear throughout the text. When 
we study different structures (rings, fields, vector spaces, etc.) we shall formulate 
corresponding notions of isomorphisms between respective structures. One of the 
central problems in mathematics is to determine what properties of a structure specify 
its isomorphism type ( i.e. ,  to prove that if G is an object with some structure (such as a 
group) and G has property P, then any other similarly structured object (group) X with 
property P is isomorphic to G). Theorems of this type are referred to as classification 
theorems. For example, we shall prove that 

any non-abelian group of order 6 is isomorphic to s3 

(so here G is the group S3 and P is the property "non-abelian and of order 6"). From 
this classification theorem we obtain D6 � S3 and G Lz (W z) � S3 without having to 
find explicit maps between these groups. Note that it is not true that any group of order 
6 is isomorphic to S3 . In fact we shall prove that up to isomorphism there are precisely 
two groups of order 6: S3 and 7lj67l (i.e., any group of order 6 is isomorphic to one 
of these two groups and S3 is not isomorphic to 7lj67l). Note that the conclusion is 
less specific (there are two possible types); however, the hypotheses are easier to check 
(namely, check to see if the order is 6). Results of the latter type are also referred to as 
classifications. Generally speaking it is subtle and difficult, even in specific instances, 
to determine whether or not two groups (or other mathematical objects) are isomorphic 
- constructing an explicit map between them which preserves the group operations 
or proving no such map exists is, except in tiny cases, computationally unfeasible as 
indicated already in trying to prove the above classification of groups of order 6 without 
further theory. 

It is occasionally easy to see that two given groups are not isomorphic. For example, 
the exercises below assert that if <p : G -+ H is an isomorphism, then, in particular, 

(a) I G I = I H I 
(b) G is abelian if and only if H is abelian 
(c) for all x E G, lx l  = l<p (x) l . 

Thus S3 and 7lj67l are not isomorphic (as indicated above) since one is abelian and the 
other is not. Also, (JR-{ 0}, x )  and (JR, +) cannot be isomorphic because in (JR-{ 0} , x )  

the element - 1  has order 2 whereas (lR, +) has no element of order 2 ,  contrary to (c). 
Finally, we record one very useful fact that we shall prove later (when we discuss 

free groups) dealing with the question of homomorphisms and isomorphisms between 
two groups given by generators and relations: 

Let G be a finite group of order n for which we have a presentation and let 
S = {st , . . .  , sm } be the generators. Let H be another group and {rt , . . . , rm } be el
ements of H. Suppose that any relation satisfied in G by the s; is also satisfied in H 
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when each s; is replaced by r; . Then there is a (unique) homomorphism q; : G --+ H 
which maps s; to r; . If we have a presentation for G, then we need only check the 
relations specified by this presentation (since, by definition of a presentation, every 
relation can be deduced from the relations given in the presentation). If H is generated 
by the elements {rt . . . .  , rm }, then q; is surjective (any product of the r; 's is the image 
of the corresponding product of the s; 's). If, in addition, H has the same (finite) or
der as G, then any surjective map is necessarily injective, i.e., q; is an isomorphism: 
G � H. Intuitively, we can map the generators of G to any elements of H and obtain 
a homomorphism provided that the relations in G are still satisfied. 

Readers may already be familiar with the corresponding statement for vector spaces. 
Suppose V is a finite dimensional vector space of dimension n with basis S and W is 
another vector space. Then we can specify a linear transformation from V to W by 
mapping the elements of S to arbitrary vectors in W (here there are no relations to 
satisfy). If W is also of dimension n and the chosen vectors in W span W (and so are a 
basis for W) then this linear transformation is invertible (a vector space isomorphism). 

Examples 

(1) Recall that D2n = ( r, s I rn = s2 = 1 ,  sr = r- 1 s ) . Suppose H is a group containing 
elements a and b with an = 1 ,  b2 = 1 and ba = a-1 b. Then there is a homomorphism 
from D2n to H mapping r to a and s to b. For instance, let k be an integer dividing n 
with k � 3 and let D2k = { r1 .  s1 I r� = sf = 1 , s1 r1 = r}1 s1 ) . Define 

q; : D2n � D2k by q;(r) = r1 and q;(s) = s1 . 

If we write n = km, then since r� = 1, also r� = (r� )m = 1 .  Thus the three relations 
satisfied by r, s in Dln are satisfied by n ,  s1 in Dlk · Thus q; extends (uniquely) to a 
homomorphism from D2n to D2k ·  Since {r1 , si } generates D2k . q; is surjective. This 
homomorphism is not an isomorphism if k < n. 

(2) Following up on the preceding example, let G = D6 be as presented above. Check 
that in H = S3 the elements a = (1 2 3) and b = ( 1 2) satisfy the relations : a3 = 1 ,  
b2 = 1 and ba = ab-1 • Thus there is a homomorphism from D6 to S3 which sends 
r �--+ a and s �--+ b. One may further check that S3 is generated by a and b, so this 
homomorphism is surjective. Since D6 and S3 both have order 6, this homomorphism 
is an isomorphism: D6 � S3 . 

Note that the element a in the examples above need not have order n ( i.e., n need 
not be the smallest power of a giving the identity in H) and similarly b need not have 
order 2 (for example b could well be the identity if a = a-1 ). This allows us to more 
easily construct homomorphisms and is in keeping with the idea that the generators and 
relations for a group G constitute a complete set of data for the group structure of G. 

E X E R C I S E S  

Let G and H be groups. 

1. Let q; : G � H be a homomorphism. 
(a) Prove that q;(xn ) = q;(x )n for all n E ::2';+. 
(b) Do part (a) for n = - 1  and deduce that q;(xn) = q;(x)n for all n E ::2':. 
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2. If q; :  G ----* H is an isomorphism, prove that lq;(x) l = lx l for all x E G. Deduce that any 
two isomorphic groups have the same number of elements of order n for each n E z+ . Is 
the result true if q; is only assumed to be a homomorphism? 

3. If q; : G """"* H is an isomorphism, prove that G is abelian if and only if H is abelian. If 
q; : G """"* H is a homomorphism, what additional conditions on q; (if any) are sufficient to 
ensure that if G is abelian, then so is H? 

4. Prove that the multiplicative groups IR - {0} and C - {0} are not isomorphic. 

5. Prove that the additive groups IR and (Q are not isomorphic. 

6. Prove that the additive groups Z and (Q are not isomorphic. 

7. Prove that Ds and Qs are not isomorphic. 

8. Prove that if n i= m, Sn and Sm are not isomorphic. 

9. Prove that D24 and S4 are not isomorphic. 

10. Fill in the details of the proof that the symmetric groups S"' and Sn are isomorphic if 
l b. I = lfll as follows: let e : b. """"* f2 be a bijection. Define 

(/J : s"' """"* Sn by q;(a) = e 0 a 0 e - 1 for all a E s"' 
and prove the following: 
(a) q; is well defined, that is, if a is a permutation of b. then 8 o a o e-I is a permutation 

of fl. 
(b) q; is a bijection from S"' onto Sn. [Find a 2-sided inverse for q;.] 
(c) q; is a homomorphism, that is,  q;(a o r) = q;(a) o q;(r) . 

Note the similarity to the change of basis or similarity transformations for matrices (we 
shall see the connections between these later in the text). 

11. Let A and B be groups. Prove that A x B � B x A.  
12. Let A , B, and C be groups and let G = A x B and H = B x C. Prove that G x C � A x H. 

13. Let G and H be groups and let q; : G """"* H be a homomorphism. Prove that the image 
of rp, q;(G) , is a subgroup of H (cf. Exercise 26 of Section 1 ). Prove that if q; is injective 
then G � q; (G) . 

14. Let G and H be groups and let q; : G """"* H be a homomorphism. Define the kernel of 
rp to be {g E G 1 q;(g) = 1 H }  (so the kernel is the set of elements in G which map to 
the identity of H, i.e., is the fiber over the identity of H). Prove that the kernel of q; is a 
subgroup ( cf. Exercise 26 of Section 1 )  of G. Prove that q; is injective if and only if the 

kernel of q; is the identity subgroup of G. 

15. Define a map ]'{ : JR2 """"* IR by ]'{((X ,  y)) = x .  Prove that ]'{ is a homomorphism and find 
the kernel of ]'{ (cf. Exercise 14). 

16. Let A and B be groups and let G be their direct product, A x B. Prove that the maps 
]'{I : G """"* A and 1'{2 : G """"* B defined by 1'{1 ((a , b)) = a and ]'{z ((a , b)) = b are 
homomorphisms and find their kernels (cf. Exercise 14). 

17. Let G be any group. Prove that the map from G to itself defined by g � g-1 is a 
homomorphism if and only if G is abelian. 

18. Let G be any group. Prove that the map from G to itself defined by g � g2 is a homo
morphism if and only if G is abelian. 

19. Let G = {z E c I zn = 1 for some n E z+ }.  Prove that for any fixed integer k > 1 
the map from G to itself defined by z � zk is a swjective homomorphism but is not an 
isomorphism. 

40 Chap. 1 Introduction to Groups 



20. Let G be a group and let Aut( G) be the set of all isomorphisms from G onto G. Prove that 
Aut( G) is a group under function composition (called the automorphism group of G and 
the elements of Aut( G) are called automorphisms of G). 

21. Prove that for each fixed nonzero k E Q the map from Q to itself defined by q r+ kq is an 
automorphism of Q (cf. Exercise 20). 

22. Let A be an abelian group and fix some k E Z. Prove that the map a r+ ak is a homomor
phism from A to itself. If k = - 1 prove that this homomorphism is an isomorphism (i.e., 
is an automorphism of A). 

23. Let G be a finite group which possesses an automorphism a (cf. Exercise 20) such that 
a (g) = g if and only if g = I .  If a2 is the identity map from G to G, prove that G is 
abelian (such an automorphism a is called fixed point free of order 2). [Show that every 
element of G can be written in the form x - 1a (x) and apply a to such an expression.] 

24. Let G be a finite group and let x and y be distinct elements of order 2 in G that generate 
G. Prove that G � D2n . where n = ixy i .  [See Exercise 6 in Section 2.] 

25. Let n E z+. let r and s be the usual generators of Dzn and let e = 2n In. 
( ) p  th th 

. ( cos e - sin e ) . th 
. f h  li c · a rove at e matnx . n n ts e matnx o t e near tmns1onnatton Slll u COS u 

which rotates the x ,  y plane about the origin in a counterclockwise direction by e 
radians. 

(b) Prove that the map cp : Dzn � GL2 (IR) defined on generators by 

- sin e ) cos e 
and 

extends to a homomorphism of Dzn into GL2 (IR) . 

cp(s) = ( � �) 
(c) Prove that the homomorphism cp in part (b) is injective. 

26. Let i and j be the generators of Qs described in Section 5. Prove that the map cp from Qs 
to G Lz (C) defined on generators by 

. ( R o ) cp(l ) = o -R and 

extends to a homomorphism. Prove that cp is injective. 

1 .7 GROUP ACTIONS 

In this section we introduce the precise definition of a group acting on a set and present 
some examples. Group actions will be a powerful tool which we shall use both for 
proving theorems for abstract groups and for unravelling the structure of specific ex
amples. Moreover, the concept of an "action" is a theme which will recur throughout 
the text as a method for studying an algebraic object by seeing how it can act on other 
structures. 

Definition. A group action of a group G on a set A is a map from G x A to A (written 
as g -a, for all g E G and a E A) satisfying the following properties: 

(1) 81 · (gz · a) = (8182) -a, for all 81 . 82 E G, a E A, and 
(2) 1 - a  = a, for all a E A. 
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We shall immediately become less formal and say G is a group acting on a set A. 
The expression g · a will usually be written simply as  ga when there is no danger of 
confusing this map with, say, the group operation (remember, · is not a binary operation 
and ga is always a member of A). Note that on the left hand side of the equation in 
property ( 1 )  g2 · a is an element of A so it makes sense to act on this by g1 • On the 
right hand side of this equation the product (g1gz) is taken in G and the resulting group 
element acts on the set element a. 

Before giving some examples of group actions we make some observations. Let 
the group G act on the set A. For each fixed g E G we get a map erg defined by 

erg : A �  A 

erg (a) = g ·a .  
We prove two important facts: 

(i) for each fixed g E G, erg is a permutation of A, and 
(ii) the map from G to SA defined by g �----+ erg is a homomorphism. 

To see that erg is a permutation of A we show that as a set map from A to A it has a 
2-sided inverse, namely erg-' (it is then a permutation by Proposition 1 of Section 0. 1 ). 
For all a E A 

(erg-' o erg) (a) = erg-' (erg (a)) 
= g-I · (g ·a) 
= (g-lg) ·a  
= 1 -a = a  

(by definition of function composition) 

(by definition of erg-' and erg) 
(by property ( 1 )  of an action) 

(by property (2) of an action). 

This proves erg-' o erg is the identity map from A to A. Since g was arbitrary, we may 
interchange the roles of g and g-1 to obtain erg o erg-' is also the identity map on A.  
Thus erg has a 2-sided inverse, hence i s  a permutation of A.  

To check assertion (ii) above let cp : G � SA be defined by cp(g) = erg . Note that 
part (i) shows that erg is indeed an element of SA . To see that cp is a homomorphism 
we must prove cp(g1g2) = cp(g1 ) o cp(g2) (recall that SA is a group under function 
composition). The permutations cp(g1 gz) and cp(g1 ) o cp(gz) are equal if and only if their 
values agree on every element a E A. For all a E A 

cp(gigz) (a) = erg, g2 (a) 
= (gigz) · a 
= gi · (gz · a) 
= erg, (erg2 (a)) 
= (cp(gi ) o cp(gz))(a) 

This proves assertion (ii) above. 

(by definition of cp) 
(by definition of erg, g) 
(by property ( 1 )  of an action) 

(by definition of erg, and erg2 ) 
(by definition of cp ). 

Intuitively, a group action of G on a set A just means that every element g in G acts 
as a permutation on A in a manner consistent with the group operations in G; assertions 
(i) and (ii) above make this precise. The homomorphism from G to SA given above is 
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called the permutation representation associated to the given action. It is easy to see 
that this process is reversible in the sense that if ({J : G ---+ SA is any homomorphism 
from a group G to the symmetric group on a set A, then the map from G x A to A 
defined by 

g · a  = ({J(g) (a) for all g E G, and all a E A 

satisfies the properties of a group action of G on A.  Thus actions of a group G on a 
set A and the homomorphisms from G into the symmetric group SA are in bijective 
correspondence (i.e., are essentially the same notion, phrased in different terminology). 

We should also note that the definition of an action might have been more precisely 
named a left action since the group elements appear on the left of the set elements. We 
could similarly define the notion of a right action. 

Examples 

Let G be a group and A a nonempty set. In each of the following examples the check of 
properties ( 1 )  and (2) of an action are left as exercises. 
(1) Let ga = a, for all g E G , a E A. Properties ( 1 )  and (2) of a group action follow 

immediately. This action is called the trivial action and G is said to act trivially on 
A. Note that distinct elements of G induce the same permutation on A (in this case 
the identity permU1ation). The associated permutation representation G ---* SA is the 
trivial homomorphism which maps every element of G to the identity. 

If G acts on a set B and distinct elements of G induce distinct permutations of 
B, the action is said to be faithful. A faithful action is therefore one in which the 
associated permutation representation is injective. 

The kernel of the action of G on B is defined to be {g E G I gb = b for all b E B}, 
namely the elements of G which fix all the elements of B. For the trivial action, the 
kernel of the action is all of G and this action is not faithful when IG I  > 1 .  

(2) The axioms for a vector space V over a field F include the two axioms that the 
multiplicative group px act on the set V.  Thus vector spaces are familiar examples 
of actions of multiplicative groups of fields where there is even more structure (in 
particular, V must be an abelian group) which can be exploited. In the special case 
when V = m.n and F = IR the action is specified by 

a(r1 , rz . . . . , rn)  = (ar1 , arz , . . . .  arn ) 

for all a E IR, (r1 ,  rz ,  . . . , rn ) E m.n , where ar; is just multiplication of two real 
numbers. 

(3) For any nonempty set A the symmetric group SA acts on A by a · a = a (a) ,  for all 
a E SA , a E A.  The associated permutation representation is the identity map from 
SA to itself. 

(4) If we fix a labelling of the vertices of a regular n-gon, each element a of Dzn gives 
rise to a permutation aa of { 1 ,  2, . . . , n} by the way the symmetry a permutes the 
corresponding vertices. The map of D2n x { 1 ,  2, . . .  , n} onto { 1 ,  2, . . . , n } defined 
by (a, i ) ---* aa (i) defines a group action of Dzn on { 1 ,  2, . . .  , n} .  In keeping with 
our notation for group actions we can now dispense with the formal and cumbersome 
notation a a (i )  and write ai in its place. Note that this action is faithful: distinct 
symmetries of a regular n-gon induce distinct permutations of the vertices. 

When n = 3 the action of D6 on the three (labelled) vertices of a triangle gives 
an injective homomorphism from D6 to S3 . Since these groups have the same order, 
this map must also be smjective, i.e., is an isomorphism: D6 � S3 . This is another 
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proof of the same fact we established via generators and relations in the preceding 
section. Geometrically it says that any permutation of the vertices of a triangle is a 
symmetry. The analogous statement is not true for any n-gon with n � 4 Gust by order 
considerations we cannot have D2n isomorphic to Sn for any n � 4). 

(5) Let G be any group and let A =  G. Define a map from G x A to A by g ·a = ga, 
for each g E G and a E A, where ga on the right hand side is the product of g and 
a in the group G. This gives a group action of G on itself, where each (fixed) g E G 
permutes the elements of G by left multiplication: 

g :  a r+ ga for all a E G 

(or, if G is written additively, we get a r+ g + a  and call this left translation). This 
action is called the left regular action of G on itself. By the cancellation laws, this 
action is faithful (check this). 

Other examples of actions are given in the exercises. 

E X E R C I S E S  

I. Let F be a field. Show that the multiplicative group of nonzero elements of F (denoted 
by Fx ) acts on the set F by g ·a = ga, where g E px , a E F and ga is the usual product 
in F of the two field elements (state clearly which axioms in the definition of a field are 
used). 

2. Show that the additive group Z acts on itself by z ·a = z + a  for all z, a E Z. 

3. Show that the additive group IR acts on the x ,  y plane IR x IR by r · (x ,  y) = (x + ry, y) . 
4. Let G be a group acting on a set A and fix some a E A. Show that the following sets are 

subgroups of G ( cf. Exercise 26 of Section 1 ): 
(a) the kernel of the action, 
(b) {g E G I ga = a}  - this subgroup is called the stabilizer of a in G. 

5. Prove that the kernel of an action of the group G on the set A is the same as the kernel of 
the corresponding permutation representation G --+  SA (cf. Exercise 14 in Section 6). 

6. Prove that a group G acts faithfully on a set A if and only if the kernel of the action is the 
set consisting only of the identity. 

7. Prove that in Example 2 in this section the action is faithful. 

8. Let A be a nonempty set and let k be a positive integer with k :::; I A 1 .  The symmetric group 
SA acts on the set B consisting of all subsets of A of cardinality k by cr · {at , . . . , ak } = 
{cr (at ) , . . . , cr (ak) } .  
(a) Prove that this is a group action. 
(b) Describe explicitly how the elements (1 2) and (1 2 3) act on the six 2-element subsets 

of { 1 ,  2, 3, 4}. 

9. Do both parts of the preceding exercise with "ordered k-tuples" in place of "k-element 
subsets," where the action on k-tuples is defined as above but with set braces replaced by 
parentheses (note that, for example, the 2-tuples ( 1 ,2) and (2, 1 )  are different even though 
the sets { 1 ,  2} and {2, 1 }  are the same, so the sets being acted upon are different). 

10. With reference to the preceding two exercises determine: 
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(a) for which values of k the action of Sn on k-element subsets is faithful, and 
(b) for which values of k the action of Sn on ordered k-tuples is faithful. 
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11. Write out the cycle decomposition of the eight permutations in S4 corresponding to the 
elements of Ds given by the action of Ds on the vertices of a square (where the vertices 
of the square are labelled as in Section 2). 

12. Assume n is an even positive integer and show that D2n acts on the set consisting of pairs 
of opposite vertices of a regular n-gon. Find the kernel of this action (label vertices as 
usual). 

13. Find the kernel of the left regular action. 

14. Let G be a group and let A = G. Show that if G is non-abelian then the maps defined by 
g ·a = ag for all g, a E G do not satisfy the axioms of a (left) group action of G on itself. 

15. Let G be any group and let A = G. Show that the maps defined by g · a  = ag-1 for all 
g, o E G do satisfy the axioms of a (left) group action of G on itself. 

16. Let G be any group and let A = G. Show that the maps defined by g ·a = gag-1 for all 
g, a E G do satisfy the axioms of a (left) group action (this action of G on itself is called 
conjugation). 

17. Let G be a group and let G act on itself by left conjugation, so each g E G maps G to G 
by 

x r+ gxg-1 • 

For fixed g E G, prove that conjugation by g is an isomorphism from G onto itself (i.e. , 
is an automorphism of G - cf. Exercise 20, Section 6). Deduce that x and gxg-1 have 
the same order for all x in G and that for any subset A of G, IA I  = l gAg-1 1 (here 
gAg-1 = {gag-1 I a E A}). 

18. Let H be a group acting on a set A. Prove that the relation � on A defined by 

a � b if and only if a = hb for some h E H 

is an equivalence relation. (For each x E A the equivalence class of x under � is called 
the orbit of x under the action of H. The orbits under the action of H partition the set A.) 

19. Let H be a subgroup (cf. Exercise 26 of Section 1 )  of the finite group G and let H act on 
G (here A = G) by left multiplication. Let x E G and let 0 be the orbit of x under the 
action of H. Prove that the map 

H � 0 defined by h �-+ hx 

is a bijection (hence all orbits have cardinality I H I  ). From this and the preceding exercise 
deduce Lagrange's Theorem: 

ifG is a finite group and H is a subgroup ofG then I H I  divides IG I . 

20. Show that the group of rigid motions of a tetrahedron is isomorphic to a subgroup (cf. 
Exercise 26 of Section 1 )  of S4 . 

21. Show that the group of rigid motions of a cube is isomorphic to S4 . [This group acts on 
the set of four pairs of opposite vertices.] 

22. Show that the group of rigid motions of an octahedron is isomorphic to a subgroup ( cf. 
Exercise 26 of Section 1 )  of S4 . [This group acts on the set offour pairs of opposite faces.] 
Deduce that the groups of rigid motions of a cube and an octahedron are isomorphic. (These 
groups are isomorphic because these solids are "dual" - see Introduction to Geometry 
by H. Coxeter, Wiley, 1961 .  We shall see later that the groups of rigid motions of the 
dodecahedron and icosahedron are isomorphic as well - these solids are also dual.) 

23. Explain why the action of the group of rigid motions of a cube on the set of three pairs of 
opposite faces is not faithful. Find the kernel of this action. 
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CHAPTER 2 

Su bgro u ps 

2.1 DEFIN ITION AND EXAMPLES 

One basic method for unravelling the structure of any mathematical object which is 
defined by a set of axioms is to study subsets of that object which also satisfy the 
same axioms. We begin this program by discussing subgroups of a group. A second 
basic method for unravelling structure is to study quotients of an object; the notion of 
a quotient group, which is a way (roughly speaking) of collapsing one group onto a 
smaller group, will be dealt with in the next chapter. Both of these themes will recur 
throughout the text as we study subgroups and quotient groups of a group, subrings and 
quotient rings of a ring, subspaces and quotient spaces of a vector space, etc. 

Definition. Let G be a group. The subset H of G is a subgroup of G if H is nonempty 
and H is closed under products and inverses (i.e ., x ,  y E H implies x-1 E H and 
xy E H). If H is a subgroup of G we shall write H :::::: G. 

Subgroups of G are just subsets of G which are themselves groups with respect 
to the operation defined in G, i.e., the binary operation on G restricts to give a binary 
operation on H which is associative, has an identity in H, and has inverses in H for all 
the elements of H. 

When we say that H is a subgroup of G we shall always mean that the operation 
for the group H is the operation on G restricted to H (in general it is possible that the 
subset H has the structure of a group with respect to some operation other than the 
operation on G restricted to H, cf. Example 5(a) following). As we have been doing for 
functions restricted to a subset, we shall denote the operation for G and the operation 
for the subgroup H by the same symbol. If H :::::: G and H =/= G we shall write H < G 
to emphasize that the containment is proper. 

If H is a subgroup of G then, since the operation for H is the operation for G 
restricted to H, any equation in the subgroup H may also be viewed as an equation in 
the group G. Thus the cancellation laws for G imply that the identity for H is the same 
as the identity of G (in particular, every subgroup must contain 1 ,  the identity of G) 
and the inverse of an element x in H is the same as the inverse of x when considered 
as an element of G (so the notation x -1 is unambiguous). 
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Examples 

(1) /Z � Q and Q � JR. with the operation of addition. 
(2) Any group G has two subgroups: H = G and H = { 1 } ;  the latter is called the trivial 

subgroup and will henceforth be denoted by 1 .  

(3) If G = Dzn is the dihedral group of order 2n, let H be { 1 ,  r, r2 , . . . , rn- 1 }, the set of 
all rotations in G. Since the product of two rotations is again a rotation and the inverse 
of a rotation is also a rotation it follows that H is a subgroup of Dzn of order n. 

( 4) The set of  even integers is a subgroup of the group of  all integers under addition. 
(5) Some examples of subsets which are not subgroups: 

(a) Q - {0} under multiplication is not a subgroup of JR. under addition even though 
both are groups and Q - {0} is a subset of JR.; the operation of multiplication on 
Q - {0} is not the restriction of the operation of addition on JR.. 

(b) z+ (under addition) is not a subgroup of /Z (under addition) because although 
z+ is closed under +, it does not contain the identity, 0, of /Z and although each 
X E z+ has an additive inverse, -X, in /Z, -X f/ z+ , i .e., z+ is not closed under 
the operation of taking inverses (in particular, z+ is not a group under addition). 
For analogous reasons, (/Z - {0} , x )  is not a subgroup of (Q - {0} , x) .  

(c) D6 is  not a subgroup of Ds since the former is  not even a subset of the latter. 
(6) The relation "is a subgroup of' is transitive: if H is a subgroup of a group G and K 

is a subgroup of H, then K is also a subgroup of G. 

As we saw in Chapter 1 ,  even for easy examples checking that all the group axioms 
(especially the associative law) hold for any given binary operation can be tedious at 
best. Once we know that we have a group, however, checking that a subset of it is (or 
is not) a subgroup is a much easier task, since all we need to check is closure under 
multiplication and under taking inverses. The next proposition shows that these can be 
amalgamated into a single test and also shows that for finite groups it suffices to check 
for closure under multiplication. 

Proposition 1. (The Subgroup Criterion) A subset H of a group G is a subgroup if and 
only if 

(1) H 1- 0, and 
(2) for all x ,  y E H, xy-1 E H. 

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed 
under multiplication. 

Proof" If H is a subgroup of G, then certainly ( 1 )  and (2) hold because H contains 
the identity of G and the inverse of each of its elements and because H is closed under 
multiplication. 

It remains to show conversely that if H satisfies both ( 1 )  and (2), then H � G. Let 
x be any element in H (such x exists by property ( 1 )) .  Let y = x and apply property 
(2) to deduce that 1 = xx -1  E H, so H contains the identity of G. Then, again by (2), 
since H contains 1 and x, H contains the element 1x- 1 , i.e., x- 1 E H and H is closed 
under taking inverses. Finally, if x and y are any two elements of H, then H contains 
x and y- 1 by what we have just proved, so by (2), H also contains x (y-1)- 1  = xy. 
Hence H is also closed under multiplication, which proves H is a subgroup of G. 
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Suppose now that H is finite and closed under multiplication and let x be any 
element in H. Then there are only finitely many distinct elements among x ,  x2 ,  x3 ,  • • •  
and so xa = xh for some integers a ,  b with b > a .  If n = b - a ,  then xn 

= I so in 
particular every element x E H is of finite order. Then xn-1 = x-1  is an element of H ,  
so H i s  automatically also closed under inverses. 

E X E R C I S E S  
Let G be a group. 

1. In each of (a) - (e) prove that the specified subset is a subgroup of the given group: 
(a) the set of complex numbers of the form a + ai ,  a E IR (under addition) 
(b) the set of complex numbers of absolute value 1 ,  i.e., the unit circle in the complex 

plane (under multiplication) 
(c) for fixed n E z+ the set of rational numbers whose denominators divide n (under 

addition) 
(d) for fixed n E z+ the set of rational numbers whose denominators are relatively prime 

to n (under addition) 
(e) the set of nonzero real numbers whose square is a rational number (under multiplica

tion). 

2. In each of (a) - (e) prove that the specified subset is not a subgroup of the given group: 
(a) the set of 2-cycles in Sn for n � 3 
(b) the set of reflections in D2n for n � 3 
(c) for n a composite integer > 1 and G a group containing an element of order n, the set 

{x E G l lx l = n} U { 1 } 
(d) the set of (positive and negative) odd integers in Z together with 0 
(e) the set of real numbers whose square is a rational number (under addition). 

3. Show that the following subsets of the dihedral group Ds are actually subgroups: 
(a) { 1 , r2 ,  s, sr2}, (b) { 1 ,  r2 ,  sr, sr3} . 

4. Give an explicit example of a group G and an infinite subset H of G that is closed under 
the group operation but is not a subgroup of G. 

5. Prove that G cannot have a subgroup H with IHI  = n - 1 ,  where n = I G I > 2.  

6. Let G be an abelian group. Prove that {g E G I l g l  < oo} is  a subgroup of G (called the 
torsion subgroup of G). Give an explicit example where this set is not a subgroup when 
G is non-abelian. 

7. Fix some n E Z with n > I .  Find the torsion subgroup (cf. the previous exercise) of 
Z x (Z/nZ) . Show that the set of elements of infinite order together with the identity is 
not a subgroup of this direct product. 

8. Let H and K be subgroups of G. Prove that H U K is a subgroup if and only if either 
H £  K or K £  H. 

9. Let G = GLn (F), where F is any field. Define 

SLn (F) = {A E GLn (F) I det(A) = 1 } 
(called the special linear group). Prove that SLn (F) :::; GLn (F). 

10. (a) Prove that if H and K are subgroups of G then so is their intersection H n K. 
(b) Prove that the intersection of an arbitrary nonempty collection of subgroups of G is 

again a subgroup of G (do not assume the collection is countable). 

11. Let A and B be groups. Prove that the following sets are subgroups of the direct product 
A X B:  
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(a) { (a ,  1 )  I a E A} 
(b) {(1 ,  b) I b E B} 
(c) { (a, a) I a E A} ,  where here we assume B = A  (called the diagonal subgroup). 

12. Let A be an abelian group and fix some n E 2.. Prove that the following sets are subgroups 
of A: 
(a) {a" I a E A} 
(b) {a E A I a" = 1 }. 

13. Let H be a subgroup of the additive group of rational numbers with the property that 
1 /x E H for every nonzero element x of H. Prove that H = 0 or Q. 

14. Show that {x E D2n I x2 = 1 }  is not a subgroup of D2n (here n ::: 3). 

15. Let Ht ::;: H2 ::;: · · · be an ascending chain of subgroups of G .  Prove that u�1 H; is a 
subgroup of G.  

16. Let n E z+ and let F be a field. Prove that the set {(a;j ) E GL, (F) I a;j = O for all i > j} 
i s  a subgroup of GL, (F) (called the group of upper triangular matrices). 

17. Let n E z+ and let F be a field. Prove that the set {(aij ) E GL, (F) I aij = 0 for all i > j ,  
and a; ; = 1 for all i }  is a subgroup of GL, (F) . 

2.2 CENTRALIZERS AN D NORMALIZERS, STABILIZERS AND KERNELS 

We now introduce some important families of subgroups of an arbitrary group G which 
in particular provide many examples of subgroups. Let A be any nonempty subset 
of G. 

Definition. Define Cc (A) = {g E G I gag- 1 = a  for all a E A} .  This subset of G 
is called the centralizer of A in G. Since gag-1 = a  if and only if ga = ag, Cc (A) is 
the set of elements of G which commute with every element of A. 

We show Cc (A) is a subgroup of G. First of all, Cc (A) =f:. I2J because 1 E Cc (A) :  
the definition of the identity specifies that la = al ,  for all a E G (in particular, for 
all a E A) so 1 satisfies the defining condition for membership in Cc (A) .  Secondly, 
assume x, y E Cc (A), that is, for all a E A, xax-1 = a and yay-1 = a (note that 
this does IWt mean xy = yx). Observe first that since yay- l = a, multiplying both 
sides of this first on the left by y- 1 , then on the right by y and then simplifying gives 
a = y-1ay, i.e., y-1 E Cc (A) so that Cc (A) is closed under taking inverses. Now 

(xy)a (xy)-1 = (xy)a (y- lx-1 ) 
= x (yay-1 )x- 1 
= xax-1 

(by Proposition 1 . 1 (4) applied to (xy)-1 ) 

(by the associative law) 

(since y E Cc (A) ) 
= a  (since x E Cc (A) ) 

so xy E Cc (A) and Cc (A) is closed under products, hence Cc (A) ::::; G. 
In the special case when A = {a} we shall write simply Cc (a) instead of Cc ({a}) . 

In this case a" E Cc (a) for all n E Z. 
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For example, in an abelian group G, CG (A) = G, for all subsets A.  One can 
check by inspection that CQ8 (i ) = { ± 1 .  ±i } .  Some other examples are specified in the 
exercises. 

We shall shortly discuss how to minimize the calculation of commutativities be
tween single group elements which appears to be inherent in the computation of cen
tralizers (and other subgroups of a similar nature). 

Definition. Define Z(G) = {g E G I gx = xg for all x E G}, the set of elements 
commuting with all the elements of G.  This subset of G is called the center of G .  

Note that Z(G) = CG (G), so the argument above proves Z(G) :'S G as a special 
case. As an exercise, the reader may wish to prove Z (G) is a subgroup directly. 

Definition. Define gAg-1 = {gag- I I a E A } .  Define the normalizer of A in G to 
be the set NG (A) = {g E G I gAg-1 = A} .  

Notice that if  g E CG (A), then gag- I = a  E A for all a E A so Cc (A) :'S Nc (A) .  
The proof that N c (A)  i s  a subgroup of  G follows the same steps which demonstrated 
that Cc (A) :'S G with appropriate modifications. 

Examples 
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(1) If G is abelian then all the elements of G commute, so Z(G) = G. Similarly, Cc (A) = 
Nc (A) = G for any subset A of G since gag- I = gg-1a = a  for every g E G and 
every a E A. 

(2) Let G = Dg be the dihedral group of order 8 with the usual generators r and s and 
let A =  { 1 ,  r, r2 , r3 } be the subgroup of rotations in Dg. We show that CD8 (A) = A. 
Since all powers of r commute with each other, A :::; CD8 (A) . Since sr = r-1 s i= rs 
the element s does not commute with all members of A, i.e., s fl. C Ds (A). Finally, the 
elements of Ds that are not in A are all of the form sri for some i E {0, I ,  2, 3} .  If 
the element sri were in C Ds (A) then since C Ds (A) is a subgroup which contains r we 
would also have the element s = (sr; ) (r-i ) in CD8 (A), a contradiction. This shows 
CD8 (A) = A. _ 

(3) As in the preceding example let G = Ds and let A = { 1 ,  r, r2 , r3 } .  We show that 
N Ds (A) = Dg. Since, in general, the centralizer of a subset is contained in its nor
malizer,

. 
A :::; N Ds (A) .  Next compute that 

sAs-I = {s ls-1 , srs-1 , sr2s-1 , sr3s- 1 } = { 1 ,  r3 , r2 , r} = A , 

so that s E ND8 (A) . (Note that the set sAs-1 equals the set A even though the elements 
in these two sets appear in different orders - this is because s is in the normalizer of 
A but not in the centralizer of A.) Now both r and s belong to the subgroup ND8 (A) 
and hence s; ri E N Ds (A) for all integers i and j,  that is, every element of Dg is in 
N D8 (A) (recall that r and s generate Ds).  Since Ds :::; NDR (A) we have ND8 (A) = Ds 
(the reverse containment being obvious from the definition of a normalizer). 

(4) We show that the center of D8 is the subgroup { 1 ,  r2} .  First observe that the center 
of any group G is contained in Cc (A) for any subset A of G. Thus by Example 2 
above Z(Ds) :::; CD8 (A) = A, where A = { 1 ,  r, r2 , r3 } .  The calculation in Example 
2 shows that r and similarly r3 are not in Z(Ds), so Z(Ds) :::; { 1 ,  r2 } .  To show the 
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reverse inclusion note that r commutes with r2 and calculate that s also commutes 
with r2 . Since r and s generate Ds, every element of Ds commutes with r2 (and 1), 
hence { 1 , r2} :::0 Z(Ds) and so equality holds. 

(5) Let G = S3 and let A be the subgroup { l ,  ( 1 2) }. We explain why Cs3 {A) = Ns3 (A) = 
A. One can compute directly that Cs3 (A) = A, using the ideas in Example 2 above to 
minimize the calculations. Alternatively, since an element commutes with its powers, 
A :::0 Cs3 (A) . By Lagrange's Theorem (Exercise 19 in Section 1 .7) the order of the 
subgroup Cs3 (A) of S3 divides I S3 I = 6. Also by Lagrange's Theorem applied to the 
subgroup A of the group Cs3 (A) we have that 2 I 1Cs3 (A) I .  The only possibilities 
are: 1 Cs3 (A) I = 2 or 6. If the latter occurs, Cs3 (A) = S3, i.e., A :::0 Z (S3);  this is a 
contradiction because ( 1 2) does not commute with ( 1 2 3) . Thus 1 Cs3 (A) I = 2 and so 
A =  Cs3 (A). 
Next note that Ns3 (A) =  A because a E Ns3 (A) if and only if 

{a 1a-1 , a ( 1 2)a-1 } = { 1 , ( 1 2) } . 

Since a 1a-1 = 1, this equality of sets occurs if and only if a(1 2)a-1 = ( 1 2) as 
well, i.e., if and only if a E Cs3 (A). 
The center of S3 is the identity because Z(S3) :::0 Cs3 (A) = A and ( 1 2) ¢ Z(S3) . 

Stabilizers and Kernels of Group Actions 

The fact that the normalizer of A in G, the centralizer of A in G, and the center of G 
are all subgroups can be deduced as special cases of results on group actions, indicating 
that the structure of G is reflected by the sets on which it acts, as follows: if G is a 
group acting on a set S and s is some fixed element of S, the stabilizer of s in G is the 
set 

Gs = {g E G I g · s = s }  
(see Exercise 4 in Section 1 .7). We show briefly that Gs � G: first 1 E Gs by axiom 
(2) of an action. Also, if y E Gs, 

s = 1 . s = (y-1 y) . s 
= y-1 . (y . s) (by axiom ( 1 )  of an action ) 

(since y E Gs) 

so y-1 E Gs as well. Finally, if x, y E Gs. then 

(xy) · s = x · (y · s) (by axiom (1 )  of an action) 

= X  · S  
= S 

(since y E Gs) 

(since x E Gs). 

This proves Gs is a subgroup1 of G.  A similar (but easier) argument proves that the 
kernel of an action is a subgroup, where the kernel of the action of G on S is defined as 

{g E G I g · s = s ,  for all s E S} 
(see Exercise 1 in Section 1 .7). 

1 Notice how the steps to prove G, is a subgroup are the same as those to prove CG (A) ::::; G with 
axiom ( 1) of an action taking the place of the associative law. 
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Examples 

(1) The group G = Ds acts on the set A of four vertices of a square (cf. Example 4 in 
Section 1 .7). The stabilizer of any vertex a is the subgroup { 1 ,  t } of Ds, where t is 
the reflection about the line of symmetry passing through vertex a and the center of 
the square. The kernel of this action is the identity subgroup since only the identity 
symmetry fixes every vertex. 

(2) The group G = Ds also acts on the set A whose elements are the two unordered pairs 
of opposite vertices (in the labelling of Figure 2 in Section 1 .2, A =  { { 1 ,  3} , {2, 4} }). 
The kernel of the action of Ds on this set A is the subgroup { 1, s ,  r2 , sr2 } and for either 
element a E A the stabilizer of a in Ds equals the kernel of the action. 

Finally, we observe that the fact that centralizers, normalizers and kernels are sub
groups is a special case of the facts that stabilizers and kernels of actions are subgroups 
(this will be discussed further in Chapter 4). Let S = P(G), the collection of all subsets 
of G, and let G act on S by conjugation, that is, for each g E G and each B � G let 

g : B -+  gBg-1 where gBg-1 = {gbg-1 I b E  B}  
(see Exercise 1 6  in Section 1 .7). Under this action, it i s  easy to check that NG (A) is 
precisely the stabilizer of A in G (i .e., NG (A) = Gs where s = A E P(G)), so NG (A) 
is a subgroup of G. 

Next let the group NG (A) act on the set S = A by conjugation, i.e., for all g E 
NG (A) and a E A 

g : a �  gag-1 • 
Note that this does map A to A by the definition of NG (A) and so gives an action on 
A. Here it is easy to check that CG (A) is precisely the kernel of this action, hence 
CG (A) ::;: NG (A); by transitivity of the relation "::;:," CG (A) ::;: G. Finally, Z(G) is the 
kernel of G acting on S = G by conjugation. so Z(G) ::;: G. 

E X E R C I S E S 

1. Prove that CG (A) = {g E G I g-1ag = a  for all a E A}. 
2. Prove that CG (Z(G)) = G and deduce that NG (Z(G)) = G . 
3. Prove that if A and B are subsets of G with A �  B then CG (B) is a subgroup of CG (A). 
4. For each of S3, Ds, and Qs compute the centralizers of each element and find the center of 

each group. Does Lagrange's Theorem (Exercise 19 in Section 1 .7) simplify your work? 

5. In each of parts (a) to (c) show that for the specified group G and subgroup A of G, 
CG (A) = A and NG (A) = G. 
(a) G = S3 and A =  { 1 ,  ( 1 2 3) ,  ( 1 3 2) } .  
(b) G = Ds and A =  { 1 , s , r2 , sr2 } . 
(c) G = Dto and A =  { 1 ,  r, r2 , r\ r4 } .  

6. Let H be a subgroup of the group G. 
(a) Show that H _:::: NG (H) .  Give an example to show that this is not necessarily true if 

H is not a subgroup. 
(b) Show that H _:::: CG (H) if and only if H is abelian. 

7. Let n E Z with n :::_ 3. Prove the following: 
(a) Z(D2n ) = 1 if n is odd 
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(b) Z(D2n) = { 1 ,  rk } if n = 2k. 
8. Let G = Sn , fix an i E { 1 ,  2, . . .  , n} and let G; = {a E G I a (i) = i } (the stabilizer of i in 

G). Use group actions to prove that G; is a subgroup of G. Find IG; 1 .  

9 .  For any subgroup H of G and any nonempty subset A of  G define NH (A) to  be  the set 
{h E H 1 hAh-1 = A} .  Show that NH (A) = Nc (A) n H and deduce that Nu (A) is a 
subgroup of H (note that A need not be a subset of H).  

10. Let H be a subgroup of order 2 in G.  Show that Nc (H) = Cc (H). Deduce that if 
Nc (H) = G then H � Z(G). 

11. Prove that Z(G) � Nc (A) for any subset A of G.  

12. Let R be the set of all polynomials with integer coefficients in  the independent variables 
Xt , x2 , X3, X4 i.e., the members of R are finite sums of elements of the form ax�' x;2 x;3 x�4 , 
where a is any integer and rt , . . .  , r4 are nonnegative integers. For example, 

12 5 7 1 8  3 1 1  6 3 23 XI X2X4 - X2X3 + XI X2X3X4 
is a typical element of R. Each a E s4 gives a permutation of {xt • . . .  ' X4} by defining 
a ·  x; = Xcr(i) ·  This may be extended to a map from R to R by defining 

a · p(Xl , X2 , X3 , X4) = p(Xcr( l) , Xcr (2) , Xcr (3) ,  Xcr (4) ) 

for all p(x1 , x2 , X3 , x4) E R (i.e., a simply permutes the indices of the variables). For 
example, if a =  ( 1  2)(3 4) and p(XJ , . . . , x4) is the polynomial in (*) above, then 

a · p(xt , X2 , X3 , X4) = 12x�xjx3 - 18xjx4 + 1 1x�xtxlx�3 

12 7 5 18  3 1 1  6 23 3 = XI x2X3 - Xt X4 + X]X2x3 x4 . 

(a) Let p = p(xt • . . .  , x4) be the polynomial in (*) above, let a = (1 2 3 4) and let 
-r = ( 1 2 3) . Compute a ·  p, -r · (a · p), (-r o a) · p, and (a o -r) ·  p. 

(b) Prove that these definitions give a (left) group action of S4 on R.  
(c) Exhibit all permutations in  s4 that stabilize X4 and prove that they form a subgroup 

isomorphic to s3 . 
(d) Exhibit all permutations in s4 that stabilize the element Xt + X2 and prove that they 

form an abelian subgroup of order 4. 
(e) Exhibit all permutations in s4 that stabilize the element X}X2 + X3X4 and prove that 

they form a subgroup isomorphic to the dihedral group of order 8. 
(f) Show that the permutations in s4 that stabilize the element (Xl + X2) (X3 + X4) are 

exactly the same as those found in part (e). (The two polynomials appearing in parts 
(e) and (f) and the subgroup that stabilizes them will play an important role in the 
study of roots of quartic equations in Section 14.6.) 

13. Let n be a positive integer and let R be the set of all polynomials with integer coefficients in 
the independent variables XJ , x2 , . . . , Xn , i.e., the members of R are finite sums of elements 
of the form ax�' x;2 • • • x�" , where a is any integer and rt , . . .  , r n are nonnegative integers. 
For each a E Sn define a map 

a :  R � R by a · p(Xt , X2 , . . .  , Xn) = p(Xcr (l) • Xcr (2) • . . .  , Xcr (n) ) · 
Prove that this defines a (left) group action of Sn on R.  

14. Let H(F) be the Heisenberg group over the field F introduced in Exercise 11 of Section 
1 .4. Determine which matrices lie in the center of H(F) and prove that Z(H(F)) is 
isomorphic to the additive group F. 

Sec. 2.2 Central izers and Normal izers, Stabi l izers and Kernels 53 



2.3 CYCLIC GROUPS AND CYCLIC SUBGROUPS 

Let G be any group and let x be any element of G. One way of  forming a subgroup H 
of G is by letting H be the set of all integer (positive, negative and zero) powers of x 
(this guarantees closure under inverses and products at least as far as x is concerned). 
In this section we study groups which are generated by one element. 

Definition. A group H is cyclic if H can be generated by a single element, i.e. , there 
is some element x E H such that H = {xn I n E Z} (where as usual the operation is 
multiplication). 

In additive notation H is cyclic if H = { nx I n E Z}. In both cases we shall write 
H = ( x ) and say H is generated by x (and x is a generator of H). A cyclic group 
may have more than one generator. For example, if H = ( x ) , then also H = ( x-1 ) 
because (x-I )n = x-n and as n runs over all integers so does -n so that 

{xn I n  E Z} = { (x-1 )n I n  E Z}. 

We shall shortly show how to determine all generators for a given cyclic group H. One 
should note that the elements of ( x ) are powers of x (or multiples of x, in groups 
written additively) and not integers. It is not necessarily true that all powers of x are 
distinct. Also, by the laws for exponents (Exercise 19  in Section 1 . 1 )  cyclic groups are 
abelian. 

Examples 
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(1) Let G = D2n = ( r, s I rn = s2 = 1 ,  rs = sr - 1 ), n � 3 and let H be the subgroup 
of all rotations of the n-gon. Thus H = ( r ) and the distinct elements of H are 
1 ,  r, r2 , . . .  , rn-I (these are all the distinct powers of r). In particular, I H I  = n and 
the generator, r, of H has order n. The powers of r "cycle" (forward and backward) 
with period n, that is, 

rn = 1 , rn+l = r, rn+2 = r2 , . . .  

r-1  = rn - l , r-2 = rn-2 , . . . etc. 

In general, to write any power of r, say r1 ,  in the form rk , for some k between 0 and 
n - 1 use the Division Algorithm to write 

t = nq + k, where 0 :::: k < n, 

so that 
rt = rnq+k = (rn)qrk = 1qrk = rk . 

For example, in Ds, r4 = 1 so r105 = r4<26H1 = r and r-42 = r4<- l lH2 = r2 . 
Observe that D2n itself is not a cyclic group since it is non-abelian. 

(2) Let H = Z with operation +. Thus H = ( 1 )  (here 1 is the integer 1 and the identity 
of H is 0) and each element in H can be written uniquely in the form n · 1 ,  for some 
n E Z. In contrast to the preceding example, multiples of the generator are all distinct 
and we need to take both positive, negative and zero multiples of the generator to 
obtain all elements of H. In this example I H I  and the order of the generator 1 are 
both oo. Note also that H = ( - 1 ) since each integer x can be written (uniquely) as 
(-x)(- 1).  
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Before discussing cyclic groups further we prove that the various properties of finite 
and infinite cyclic groups we observed in the preceding two examples are generic. This 
proposition also validates the claim (in Chapter 1 ) that the use of the terminology for 
"order" of an element and the use of the symbol I I are consistent with the notion of 
order of a set 

Proposition 2. If H = ( x  ) , then I H I  = lx l (where if one side of this equality is 
infinite, so is the other). More specifically 

(1) if I H I  = n < oo, then xn = 1 and 1 ,  x ,  x2 , • . .  , xn- I are all the distinct elements 
of H, and 

(2) if I H I  = oo, then xn ::f. 1 for all n ::f. 0 and xa ::f. xb for all a ::f. b in Z. 

Proof- Let lx I = n and first consider the case when n < oo. The elements 
1 ,  x ,  x2 , • • •  , xn-I  are distinct because if xa = xb, with, say, 0 _::: a < b < n, then 
xb-a = x0 = 1 ,  contrary to n being the smallest positive power of x giving the identity. 
Thus H has at least n elements and it remains to show that these are all of them. As we 
did in Example 1 ,  if x1 is any power of x, use the Division Algorithm to write t = nq + k, 
where 0 _::: k < n, so 

x1 = xnq+k = (xn )qxk = 1 qxk = xk E { l , x , x2 , . . • , xn-I } , 

as desired. 
Next suppose lx I = oo so no positive power of x is the identity. If xa = xb,  for 

some a and b with, say, a < b, then xb-a = 1 ,  a contradiction. Distinct powers of x 
are distinct elements of H so 1 HI  = oo. This completes the proof of the proposition. 

Note that the proof of the proposition gives the method for reducing arbitrary 
powers of a generator in a finite cyclic group to the "least residue" powers. It is not a 
coincidence that the calculations of distinct powers of a generator of a cyclic group of 
order n are carried out via arithmetic in Z/ nZ. Theorem 4 following proves that these 
two groups are isomorphic. 

First we need an easy proposition. 

Proposition 3. Let G be an arbitrary group, x E G and let m,  n E Z. If xn = 1 and 
xm = 1 ,  then xd = 1 ,  where d = (m, n ) . In particular, if xm = 1 for some m E Z, then 
lx I divides m. 

Proof- By the Euclidean Algorithm (see Section 0.2 (6)) there exist integers r and 
s such that d = mr + ns , where d is the g.c.d. of m and n. Thus 

xd = xmr+ns = (xm)r (xn y = 1r 1s = 1 . 

This proves the first assertion. 
If xm = 1 ,  let n = lx 1 - If m = 0, certainly n I m, so we may assume m ::f. 0. Since 

some nonzero power of x is the identity, n < oo. Let d = (m, n) so by the preceding 
result xd = 1 .  Since 0 < d _::: n and n is the smallest positive power of x which gives 
the identity, we must have d = n, that is, n I m, as asserted. 
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Theorem 4. Any two cyclic groups of the same order are isomorphic. More specifically, 
(1) if n E z+ and ( x ) and ( y ) are both cyclic groups of order n, then the map 

({! : ( x ) -+ ( y )  

xk � l  

is well defined and is an isomorphism 
(2) if ( x ) is an infinite cyclic group, the map 

({! : IZ -+ ( x )  

k �  xk 

is well defined and is an isomorphism. 

Proof" Suppose ( x ) and ( y ) are both cyclic groups of order n. Let ({! : ( x ) ---+ ( y )  
be defined by ({!(xk) = yk ; we must first prove ({! is well defined, that is, 

if xr = xs , then ({!(Xr) = ({! (Xs) .  

Since xr-s = 1 ,  Proposition 3 implies n I r - s . Write r = tn + s so 

({! (Xr) = ({!(Xtn+s) 

= (yn)tys 

= Ys = ({!(Xs) .  

This proves ({! is  well defined. It is  immediate from the laws of exponents that ({!(Xa xh)  = 

({!(xa)({! (xb) (check this), that is, ({! is a homomorphism. Since the element yk of ( y )  
is the image of xk under ({!, this map is sutjective. Since both groups have the same 
finite order, any sutjection from one to the other is a bijection, so ({! is an isomorphism 
(alternatively, ({! has an obvious two-sided inverse). 

If ( x ) is an infinite cyclic group, let ({! : IZ ---+ ( x )  be defined by ({!(k) = xk . Note 
that this map is already well defined since there is no ambiguity in the representation 
of elements in the domain. Since (by Proposition 2) xa =P xb, for all distinct a, b E /Z, 
({! is injective. By definition of a cyclic group, ({! is sutjective. As above, the laws of 
exponents ensure ({! is a homomorphism, hence ({! is an isomorphism, completing the 
proof. 

We chose to use the rotation group ( r ) as our prototypical example of a finite cyclic 
group of order n (instead of the isomorphic group /Zfn/Z) since we shall usually write 
our cyclic groups multiplicatively: 

Notation: For each n E z+ , let Zn be the cyclic group of order n (written multiplica
tively). 

Up to isomorphism, Zn is the unique cyclic group of order n and Zn � /Zf nil. On 
occasion when we find additive notation advantageous we shall use the latter group as 
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our representative of the isomorphism class of cyclic groups of order n .  We shall occa
sionally say "let { x ) be the infinite cyclic group" (written multiplicatively), however 
we shall always use IZ (additively) to represent the infinite cyclic group. 

As noted earlier, a given cyclic group may have more than one generator. The next 
two propositions determine precisely which powers of x generate the group { x ) . 

Proposition 5. Let G be a group, let x E G and let a E IZ - {0} . 
(1) If lx I = oo, then lxa I = oo. 

n (2) If lx l = n < oo, then lxa l = -- . 
(n , a) 

(3) In particular, if lx l = n < oo and a is a positive integer dividing n, then 
a - � lx 1 - . a 

Proof" (1 )  By way of contradiction assume lx l = oo but lxa l = m < oo. By 
definition of order 

Also, 

Now one of am or -am is positive (since neither a nor m is 0) so some positive power of 
x is the identity. This contradicts the hypothesis lx I = oo, so the assumption lxa 1 < oo 

must be false, that is, ( 1 ) holds. 
(2) Under the notation of (2) let 

y = xa , (n , a) = d and write n = db, a = de , 

for suitable b, c E IZ with b > 0. Since d is the greatest common divisor of n and a, 
the integers b and c are relatively prime: 

(b, c) = 1 .  
To establish (2) we must show I Y I  = b. First note that 

yb = xab = xdcb 
= (xdb)c = (xn )" = I" = l 

so, by Proposition 3 applied to { y } ,  we see that I Y I  divides b .  Let k = l y l .  Then 

xak = yk = 1 

so by Proposition 3 applied to { x ) , n I ak, i.e., db I dck. Thus b j ck . Since b and c 
have no factors in common, b must divide k .  Since b and k are positive integers which 
divide each other, b = k, which proves (2). 

(3) This is a special case of (2) recorded for future reference. 

Proposition 6. Let H = { x ) . 
(1) Assume lx l = oo. Then H = { xa ) if and only if a =  ± 1 .  
(2) Assume lx l = n < oo .  Then H = { xa ) if and only if (a, n) = 1 . In particular, 

the number of generators of H is <p(n) (where <p is Euler's <p-function). 
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Proof: We leave (1 )  as an exercise. In (2) if lx l = n < oo, Proposition 2 says x0 
generates a subgroup of H of order lxa 1 - This subgroup equals all of H if and only if 
lxa l = lx l . By Proposition 5, 

n 
lx0 l  = lx l if and only if -- = n, i.e. if and only if (a , n) = 1 .  (a , n) 

Since cp(n) is, by definition, the number of a E { 1 ,  2, . . . , n} such that (a , n) = 1, this 
is the number of generators of H. 

Example 
Proposition 6 tells precisely which residue classes mod n generate '11../ n7!..: namely, ii gen
erates 7!..fn7!.. if and only if (a, n) = 1 .  For instance, L 5, 7 and IT are the generators of 
71..f l27!.. and rp(12) = 4. 

The final theorem in this section gives the complete subgroup structure of a cyclic 
group. 

Theorem 7. Let H = { x )  be a cyclic group. 
(1) Every subgroup of H is cyclic. More precisely, if K .:::; H, then either K = { 1 } 

or K = { xd ) ,  where d is the smallest positive integer such that xd E K.  
(2) If  I H I = oo, then for any distinct nonnegative integers a and b,  { x0 ) =j:. 

{ xb ) . Furthermore, for every integer m, { xm ) = { x lm l ) , where lm I denotes 
the absolute value of m ,  so that the nontrivial subgroups of H correspond 
bijectively with the integers 1 , 2, 3 , . . . .  

(3) If I H I = n < oo, then for each positive integer a dividing n there is a unique n 
subgroup of H of order a .  This subgroup is the cyclic group { xd ) , where d = - .  a 
Furthermore, for every integer m ,  { xm ) = ( x <n.m) ) ,  so that the subgroups of 
H correspond bijectively with the positive divisors of n. 

Proof: ( 1 )  Let K ::: H. If K = { 1 }, the proposition is true for this subgroup, so we 
assume K =j:. { 1 } . Thus there exists some a =j:. 0 such that x0 E K. If a < 0 then since 
K is a group also x-a = (x0)-1 E K. Hence K always contains some positive power 
of x .  Let 

p = {b I b E z+ and xb E K}.  

By the above, P is a nonempty set of positive integers. By the Well Ordering Principle 
(Section 0.2) P has a minimum element - call it d. Since K is a subgroup and xd E K, 
{ xd ) ::: K .  Since K is a subgroup of H, any element of K is of the form xa for some 
integer a. By the Division Algorithm write 

a = qd + r 0 .:::; r < d. 

Then x' = x<a-qd) = x0 (xd)-q is an element of K since both x0 and xd are elements of 
K .  By the minimality of d it follows that r = O, i.e . , a = qd and so x0 = (xd)q E { xd ) .  
This gives the reverse containment K .:::; { xd ) which proves (1  ) . 

We leave the proof of (2) as an exercise (the reasoning is similar to and easier than 
the proof of (3) which follows). 
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n 
(3) Assume I H I = n < oo and a I n. Let d = - and apply Proposition 5(3) to a 

obtain that ( xd ) is a subgroup of order a, showing the existence of a subgroup of order 
a. To show uniqueness, suppose K is any subgroup of H of order a. By part ( 1 )  we 
have 

where b is the smallest positive integer such that xh E K. By Proposition 5 

n b n - = a  = I K I = lx I = --. 
d �. � 

so d =  (n, b) . In particular, d I b. Since b is a multiple of d, xh E ( xd ) ,  hence 

K = ( xb ) ::: ( xd ) . 

Since l ( xd ) I = a = I K I , we have K = ( xd ) .  
The final assertion of (3) follows from the observation that ( xm ) is a subgroup of 

( x (n ,m) }  (check this) and, it follows from Proposition 5(2) and Proposition 2 that they 
have the same order. Since (n , m) is certainly a divisor of n, this shows that every 
subgroup of H arises from a divisor of n,  completing the proof. 

Examples 
(1) We can use Proposition 6 and Theorem 7 to list all the subgroups of 'll.jn'll. for any 

given n. For example, the subgroups of 'll./127!.. are 
(a) 'll./127!.. = ( I )  = ( 5 ) = ( 7 ) = (ff ) (order 12) 
(b) ( 2 )  = ( 10 )  (order 6) 
(c) ( 3 )  = ( 9 )  (order 4) 
(d) ( 4 )  = ( S )  (order 3) 
(e) ( 6 )  (order 2) 
(t) ( 6 )  (order 1) .  

The inclusions between them ar e  given by 

( a )  :::: ( ii )  if and only if (b , 12) J (a, 12} ,  1 :::: a, b :::: 12. 

(2) We can also combine the results of this section with those of the preceding one. For 
example, we can obtain subgroups of a group G by forming Cc (( x )) and Nc ( (x  )}, 
for each x E G.  One can check that an element g in G commutes with x if and only 
if g commutes with all powers of x, hence 

Cc(( x )} = Cc(x) .  

As noted in  Exercise 6 ,  Section 2 ,  ( x ) :::: N G ( ( x ) ) but equality need not hold. For 
instance, if G = Qs and x = i , 

Cc ( { i ) ) = {±1 , ±i } = ( i ) and Nc( ( i )} = Qs. 

Note that we already observed the first of the above two equalities and the second is 
most easily computed using the result of Exercise 24 following. 
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E X E R C I S E S  

1. Find all subgroups of Z45 = ( x ) , giving a generator for each. Describe the containments 
between these subgroups. 

2. If x is an element of the finite group G and lx I = 1 G I, prove that G = ( x ) . Give an 
explicit example to show that this result need not be true if G is an infinite group. 

3. Find all generators for Zj48Z. 

4. Find all generators for Z/202Z. 

5. Find the number of generators for Zj49000Z. 

6. In Zj48Z write out all elements of ( ii )  for every ii. Find all inclusions between subgroups 
in Zj48Z. 

7. Let Z4s = ( x ) and use the isomorphism Zj48Z � Z4s given by l r+  x to list all subgroups 
of Z4s as computed in the preceding exercise. 

8. Let Z4s = ( x ) . For which integers a does the map ({Ja defined by ({Ja : 1 r+ xa extend to 
an isomorphism from Zj48Z onto Z4g . 

9. Let Z36 = ( x  ) .  For which integers a does the map 1/Ja defined by 1/Ja : l r+  xa extend 
to a well defined homomorphism from Zj48Z into Z36 ·  Can 1/Ja ever be a surjective 
homomorphism? 

10. What is the order of 30 in Zj54Z? Write out all of the elements and their orders in ( 30 ) .  

11. Find all cyclic subgroups o f  Dg. Find a proper subgroup of D8 which i s  not cyclic. 

12. Prove that the following groups are not cyclic: 
(a) Zz x Zz 
(b) z2 x Z 
(c) Z x Z. 

13. Prove that the following pairs of groups are not isomorphic: 
(a) Z x Zz and Z 
(b) Q x Zz and Q. 

14. Let a = ( 1  2 3 4 5 6  7 8 9 1 0  1 1  12) .  For each of the following integers a compute aa : 
a = 13,  65, 626, 1 195, -6, -81 ,  -570 and - 12 1 1 .  

15. Prove that Q x Q i s  not cyclic. 

16. Assume lx l  = n and ly l = m .  Suppose that x and y commute: xy = yx . Prove that 
lxy l divides the least common multiple of m and n .  Need this be true if x and y do not 
commute? Give an example of commuting elements x, y such that the order of xy is not 
equal to the least common multiple of lx l  and ly l .  

17. Find a presentation for Zn with one generator. 

18. Show that if H is any group and h is an element of H with hn = 1 ,  then there is a unique 
homomorphism from Zn = ( x ) to H such that x 1-+ h .  

19. Show that if H is any group and h i s  an element of  H, then there is a unique homomorphism 
from Z to H such that 1 r+  h. 

20. Let p be a prime and let n be a positive integer. Show that if x is an element of the group 
G such that xP" = 1 then lx l  = pm for some m � n .  

21. Let p be an odd prime and let n be a positive integer. Use the Binomial Theorem to show 
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n - 1  n-2 
that ( 1  + p)P = 1 (mod pn ) but ( 1  + p)P =/= 1 (mod pn) .  Deduce that 1 + p is an 
element of order pn- l in the multiplicative group (Z/ pnz)x . 
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22. Let n be an integer � 3. Use the Binornial Thcorem to show that (l + 22)2"-2 
= l (mod 2n) 

but ( 1  + 22)2"-
' 

¢ l (mod 2n) .  Deduce that 5 is an element of order 2n-2 in the multi
plicative group (7!./2nz)x .  

23. Show that (7!./2nz) x is not cyclic for any n � 3 .  [Find two distinct subgroups of order 2.] 

24. Let G be a finite group and let x E G. 
(a) Prove that if g E NG (( x ) )  then gxg-1 = x0 for some a E 7!.. 
(b) Prove conversely that if gxg-1 = x0 for some a E 7!. then g E NG ( ( x  )). [Show 

first that gxkg- 1 = (gxg-l)k = xak for any integer k, so that g ( x ) g-1 � ( x  ) . If 
x has order n, show the elements gxi g-1 , i = 0, 1 ,  . . .  , n - l are distinct, so that 
lg ( x ) g-1 1 = l ( x ) l = n and conclude that g ( x ) g-1 = ( x ) .] 

Note that this cuts down some of the work in computing normalizers of cyclic subgroups 
since one docs not have to check ghg-1 E ( x ) for every h E  ( x  ) .  

25. Let G be a cyclic group of order n and let k b e  an integer relatively prime to n.  Prove 
that the map x � xk is surjective. Use Lagrange's Theorem (Exercise 19, Section 1 .7) 
to prove the same is true for any finite group of order n. (For such k each element has a 
kth root in G. It follows from Cauchy's Theorem in Section 3.2 that if k is not relatively 
prime to the order of G then the map x � xk is not surjective.) 

26. Let Zn be a cyclic group of order n and for each integer a let 

by a0 (x) = X0 for all x E Zn . 

(a) Prove that aa is an automorphism of Zn if and only if a and n are relatively prime 
(automorphisms were introduced in Exercise 20, Section 1 .6). 

(b) Prove that a a = ab if and only if a = b (mod n) . 
(c) Prove that every automorphism of Zn is equal to a a for some integer a .  
(d) Prove that aa oab = Uab ·  Deduce that the map a � aa is an isomorphism of (7!.jn7!.) x 

onto the automorphism group of Zn (so Aut(Zn) is an abelian group of order qJ(n)). 

2.4 SUBGROUPS GENERATED BY SU BSETS OF A GROU P 

The method of forming cyclic subgroups of a given group is a special case of the general 
technique where one forms the subgroup generated by an arbitrary subset of a group. In 
the case of cyclic subgroups one takes a singleton subset {x } of the group G and forms 
all integral powers of x ,  which amounts to closing the set {x } under the group operation 
and the process of taking inverses. The resulting subgroup is the smallest subgroup of 
G which contains the set (x} (smallest in the sense that if H is any subgroup which 
contains { x} ,  then H contains ( x ) ). Another way of saying this is that ( x ) is the unique 
minimal element of the set of subgroups of G containing x (ordered under inclusion). 
In this section we investigate analogues of this when {x } is replaced by an arbitrary 
subset of G. 

Throughout mathematics the following theme recurs: given an object G (such as 
a group, field, vector space, etc.) and a subset A of G, is there a unique minimal 
subobject of G (subgroup, subfield, subspace, etc.) which contains A and, if so, how 
are the elements of this subobject computed? Students may already have encountered 
this question in the study of vector spaces. When G is a vector space (with, say, real 
number scalars) and A = {v i , v2 , . . .  , Vn } ,  then there is a unique smallest subspace of 
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G which contains A, namely the (linear) span of v1 , v2 , • • •  , vn and each vector in this 
span can be written as k1 v1 + kzvz + · · · + knvn , for some k1 , . . .  , kn E JR. When A is 
a single nonzero vector, v, the span of { v } is simply the 1-dimensional subspace or line 
containing v and every element of this subspace is of the form kv for some k E JR. This 
is the analogue in the theory of vector spaces of cyclic subgroups of a group. Note that 
the 1 -dimensional subspaces contain kv, where k E �. not just kv, where k E Z; the 
reason being that a subspace must be closed under all the vector space operations (e.g., 
scalar multiplication) not just the group operation of vector addition. 

Let G be any group and let A be any subset of G. We now make precise the notion 
of the subgroup of G generated by A. We prove that because the intersection of any set 
of subgroups of G is also a subgroup of G, the subgroup generated by A is the unique 
smallest subgroup of G containing A; it is " smallest" in the sense of being the minimal 
element of the set of all subgroups containing A. We show that the elements of this 
subgroup are obtained by closing the given subset under the group operation (and taking 
inverses). In succeeding parts of the text when we develop the theory of other algebraic 
objects we shall refer to this section as the paradigm in proving that a given subset 
is contained in a unique smallest subobject and that the elements of this subobject are 
obtained by closing the subset under the operations which define the object. Since in the 
latter chapters the details will be omitted, students should acquire a solid understanding 
of the process at this point. 

In order to proceed we need only the following. 

Proposition 8. If A is any nonempty collection of subgroups of G, then the intersection 
of all members of A is also a subgroup of G. 

Proof: This is  an easy application of the subgroup criterion (see also Exercise 10, 
Section 1 ). Let 

K = n H. 
HeA 

Since each H E A is a subgroup, 1 E H, so 1 E K, that is, K =I QJ. If a, b E K, 
then a, b E H, for all H E A. Since each H is a group, ab- 1 E H, for all H, hence 
ab- 1 E K.  Proposition 1 gives that K � G. 

Definition. If A is any subset of the group G define 

{ A ) = n H. 
ACH H?:;G 

This is called the subgroup of G generated by A. 

Thus { A )  is the intersection of all subgroups of G containing A. It is a subgroup 
of G by Proposition 8 applied to the set A = {H � G I A � H} (A is nonempty since 
G E A). Since A lies in each H E A, A is a subset of their intersection, { A ) . Note that 
{ A ) is the unique minimal element of A as follows: { A ) is a subgroup of G containing 
A, so { A ) E A; and any element of A contains the intersection of all elements in A, 
i.e., contains { A ) . 
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When A is the finite set {ai ,  az , . . .  , an } we write ( a1 , az, . . .  , an ) for the group 
generated by a1 , az , . . .  , an instead of ( {a1 , az, . . . , an } ) .  If A and B are two subsets 
of G we shall write ( A , B )  in place of ( A U B ) . 

This "top down" approach to defining ( A ) proves existence and uniqueness of the 
smallest subgroup of G containing A but is not too enlightening as to how to construct 
the elements in it. As the word "generates" suggests we now define the set which is the 
closure of A under the group operation (and the process of taking inverses) and prove 
this set equals ( A ) . Let 

A = {a�•a;2 • • •  a�" I n E Z, n � O and a; E A , E; = ± 1  for each i }  

where A = { 1 } if A = 0 ,  so that A i s  the set of all finite products (called words) of 
elements of A and inverses of elements of A. Note that the a; 's need not be distinct, 
so a2 is written aa in the notation defining A. Note also that A is not assumed to be a 
finite (or even countable) set. 

Proposition 9. A = ( A ) . 

Proof" We first prove A is a subgroup. Note that A =f. 0 (even if A = 0). If 
a ,  b E A with a = a�' a;2 • • •  a�" and b = b� ' b� . . .  b� , then 

b-1 Et E2 En b-�b-�m- 1 b-� 1 a = al az . . .  an . m m-1 . . . 1 

(where we used Exercise 15  of Section 1 . 1  to compute b-1 ). Thus ab-1 is a product 
of elements of A raised to powers ±1 , hence ab-1 E A. Proposition I implies A is a 
subgroup of G.  

Since each a E A may be  written a1 , i t  follows that A � A,  hence ( A  ) � A. But 
( A ) is a group containing A and, since it is closed under the group operation and the 
process of taking inverses, ( A ) contains each element of the form a�' a;2 • • •  a�" , that 
is, A � ( A ) . This completes the proof of the proposition. 

We now use ( A ) in place of A and may take the definition of A as an equivalent 
definition of ( A ) . As noted above, in this equivalent definition of ( A ) , products of the 
form a ·  a, a ·  a · a, a ·  a- 1 ,  etc. could have been simplified to a2, a3,  1 ,  etc. respectively, 
so another way of writing ( A ) is 

( A )  = {a�' a�2 • • •  a�" 1 for each i, a; E A ,  a; E Z, a; =f. a;+ I and n E z+} .  

In  fact, when A = {x } this was our definition of ( A ) . 
If G is abelian, we could commute the a; 's and so collect all powers of a given 

generator together. For instance, if A were the finite subset {a1 , az , . . .  , ak } of the 
abelian group G, one easily checks that 

( A )  = {a�' a�2 • • •  a�k I a; E Z for each i } .  

If in this situation we further assume that each a; has finite order d; , for all i ,  then 
since there are exactly d; distinct powers of a; , the total number of distinct products of 
the form a�• a�2 • • •  a�k is at most d1 dz . . .  db that is, 
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It may happen that a" b/3 = a Y b� even though a" =f:. a Y and b/3 =f:. b� . We shall explore 
exactly when this happens when we study direct products in Chapter 5.  

When G is non-abelian the situation is much more complicated. For example, let 
G = D8 and let r and s be the usual generators of Ds (note that the notation D8 = ( r, s ) 
is consistent with the notation introduced in Section 1 .2). Let a = s, let b = r s and 
let A = {a , b} . Since both s and r (= rs · s) belong to ( a , b ) , G = ( a, b ) , i.e., G is 
also generated by a and b. Both a and b have order 2, however D8 has order 8. This 
means that it is not possible to write every element of Ds in the form a" b/3 , a, f3 E Z. 
More specifically, the product aha cannot be simplified to a product of the form a" b/3 . 
In fact, if G = D2n for any n > 2, and r, s ,  a ,  b are defined in the same way as above, 
it is still true that 

la l = l h l  = 2, Dzn = ( a, b )  and I Dzn l = 2n.  

This means that for large n, long products of the form abab . . .  ab cannot be further 
simplified. In particular, this illustrates that, unlike the abelian (or, better yet, cyclic) 
group case, the order of a (finite) group cannot even be bounded once we know the 
orders of the elements in some generating set. 

Another example of this phenomenon is Sn : 

Sn = ( (1 2) ,  ( 1 2 3  . . . n) ) . 
Thus Sn is generated by an element of order 2 together with one of order n, yet I Sn I = n !  
(we shall prove these statements later after developing some more techniques). 

One final example emphasizes the fact that if G is non-abelian, subgroups of G 

generated by more than one element of G may be quite complicated. Let 

G = GLz (R) , a = ( � �) . h = ( 1�2 �) 
so a2 = b2 = 1 but ab = ( 1�2 �) . It is easy to see that ab has infinite order, so 

( a, b ) is an infinite subgroup of G L2 (R) which is generated by two elements of order 
2. 

These examples illustrate that when lA I � 2 it is difficult, in general, to compute 
even the order of the subgroup generated by A, let alone any other structural properties. 
It is therefore impractical to gather much information about subgroups of a non-abelian 
group created by taking random subsets A and trying to write out the elements of (or 
other information about) ( A ) . For certain "well chosen" subsets A, even of a non
abelian group G, we shall be able to make both theoretical and computational use of 
the subgroup generated by A. One example of this might be when we want to find 
a subgroup of G which contains ( x ) properly; we might search for some element y 
which commutes with x (i.e., y E Cc (x)) and form ( x ,  y ) .  It is easy to check that 
the latter group is abelian, so its order is bounded by lx l ly l . Alternatively, we might 
instead take y in N c ( ( x ) ) - in this case the same order bound holds and the structure 
of ( x,  y )  is again not too complicated (as we shall see in the next chapter). 

The complications which arise for non-abelian groups are generally not quite as 
serious when we study other basic algebraic systems because of the additional algebraic 
structure imposed. 
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E X E R C I S E S  

1. Prove that if H is a subgroup of G then ( H } = H. 

2. Prove that if A is a subset of B then ( A }  ::::= ( B } .  Give an example where A 5; B with 
A =/- B but ( A }  = ( B } .  

3.  Prove that i f  H is an abelian subgroup of  a group G then ( H,  Z(G) } is abelian. Give an 
explicit example of an abelian subgroup H of a group G such that ( H, CG (H) } is not 
abelian. 

4. Prove that if H is a subgroup of G then H is generated by the set H - { 1 } . 

5. Prove that the subgroup generated by any two distinct elements of order 2 in S3 is all of 
S3 . 

6. Prove that the subgroup of S4 generated by ( 1  2) and ( 1  2) (3 4) is a noncyclic group of 
order 4. 

7. Prove that the subgroup of S4 generated by (1 2) and (1 3) (2 4) is isomorphic to the 
dihedral group of order 8. 

8. Prove that S4 = ( (1 2 3 4) , ( 1  2 4 3) } .  

9. Prove that S L z  ( lF  3) i s  the subgroup o f  G L z  (lF 3) generated by ( � � ) and ( � �) . [Re

call from Exercise 9 of Section 1 that SL2(1F3) is the subgroup of matrices of determinant 
1 .  You may assume this subgroup has order 24 - this will be an exercise in Section 3.2.] 

10. Prove that the subgroup of SLz(lF3) generated by ( � � 1 ) and ( � � 
1
) is isomorphic 

to the quatemion group of order 8. [Use a presentation for Qg.)  

11. Show that SLz(lF3) and S4 are two nonisomorphic groups of order 24. 

12. Prove that the subgroup of upper triangular matrices in GL3 (lF2) is isomorphic to the 
dihedral group of order 8 ( cf. Exercise 16, Section 1 ). [First find the order of this subgroup.] 

13. Prove that the multiplicative group of positive rational numbers is generated by the set 

{ f, I p is a prime } .  

14. A group H is called finitely generated if there is a finite set A such that H = ( A } . 
(a) Prove that every finite group is finitely generated. 
(b) Prove that Z is finitely generated. 
(c) Prove that every finitely generated subgroup of the additive group Q is cyclic. [If H 

is a finitely generated subgroup of Q, show that H ::::= ( � } , where k is the product of 

all the denominators which appear in a set of generators for H .] 

(d) Prove that Q is not finitely generated. 

15. Exhibit a proper subgroup of Q which is not cyclic. 

16. A subgroup M of a group G is called a maximal subgroup if M =1- G and the only subgroups 
of G which contain M are M and G. 
(a) Prove that if  H is a proper subgroup of the finite group G then there is  a maximal 

subgroup of G containing H. 
(b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup. 
(c) Show that if G = ( x }  is a cyclic group of order n ::=-:: 1 then a subgroup H is maximal 

if and only H = ( x P } for some prime p dividing n. 
17. This is an exercise involving Zorn's Lemma (see Appendix I) to prove that every nontrivial 

finitely generated group possesses maximal subgroups. Let G be a finitely generated 
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group, say G = ( gt , g2 , . . .  , gn ) , and let S be the set of all proper subgroups of G. Then 
S is partially ordered by inclusion. Let C be a chain in S. 
(a) Prove that the union, H, of all the subgroups in C is a subgroup of G. 
(b) Prove that H is a proper subgroup. [If not, each g; must lie in H and so must lie in 

some element of the chain C. Use the definition of a chain to arrive at a contradiction.] 
(c) Use Zorn's Lemma to show that S has a maximal element (which is, by definition, a 

maximal subgroup). 
18. Let p be a prime and let Z = { z E C 1 z P" = 1 for some n E z+ } (so Z is the multiplicative 

group of all p-power roots of unity in C). For each k E z+ let Hk = {z E Z 1 zPk = 1 }  
(the group of pkth roots of unity). Prove the following: 
(a) Hk � Hm if and only if k � m 
(b) Hk is cyclic for all k (assume that for any n E z+, {e2JTitjn I t = 0, 1 ,  . . .  , n - 1 }  is 

the set of all nth roots of 1 in C) 
(c) every proper subgroup of Z equals Hk for some k E z+ (in particular. every proper 

subgroup of Z is finite and cyclic) 
(d) Z is not finitely generated. 

19. A nontrivial abelian group A (written multiplicatively) is called divisible if for each element 
a E A and each nonzero integer k there is an element x E A such that xk 

= a, i.e., each 
element has a kth root in A (in additive notation, each element is the kth multiple of some 
element of A). 
(a) Prove that the additive group of rational numbers, Q, is divisible. 
(b) Prove that no finite abelian group is divisible. 

20. Prove that if A and B are nontrivial abelian groups, then A x B is divisible if and only if 
both A and B are divisible groups. 

2.5 THE LATTICE OF SUBGROUPS OF A GROUP 

In this section we describe a graph associated with a group which depicts the relation
ships among its subgroups. This graph, called the lattice2 of subgroups of the group, is 
a good way of "visualizing" a group - it certainly illuminates the structure of a group 
better than the group table. We shall be using lattice diagrams, or parts of them, to 
describe both specific groups and certain properties of general groups throughout the 
chapters on group theory. Moreover, the lattice of subgroups of a group will play an 
important role in Galois Theory. 

The lattice of subgroups of a given finite group G is constructed as follows: plot 
all subgroups of G starting at the bottom with 1 ,  ending at the top with G and, roughly 
speaking, with subgroups of larger order positioned higher on the page than those of 
smaller order. Draw paths upwards between subgroups using the rule that there will 
be a line upward from A to B if A :::: B and there are no subgroups properly between 
A and B. Thus if A :S: B there is a path (possibly many paths) upward from A to B 
passing through a chain of intermediate subgroups (and a path downward from B to 
A if B 2: A). The initial positioning of the subgroups on the page, which is, a priori, 
somewhat arbitrary, can often (with practice) be chosen to produce a simple picture. 
Notice that for any pair of subgroups H and K of G the unique smallest subgroup 

2The term "lattice" has a precise mathematical meaning in terms of partially ordered sets. 
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which contains both of them, namely { H, K )  (called the join of H and K), may be 
read off from the lattice as follows: trace paths upwards from H and K until a common 
subgroup A which contains H and K is reached (note that G itself always contains all 
subgroups so at least one such A exists). To ensure that A = { H, K )  make sure there is 
no A 1 :::: A (indicated by a downward path from A to A 1 ) with both H and K contained 
in A 1 (otherwise replace A with A t  and repeat the process to see if A t = { H, K ) ). By 
a symmetric process one can read off the largest subgroup of G which is contained in 
both H and K, namely their intersection (which is a subgroup by Proposition 8). 

There are some limitations to this process, in particular it cannot be carried out per 
se for infinite groups. Even for finite groups of relatively small order, lattices can be 
quite complicated (see the book Groups of Order 211 , n :::: 6 by M. Hall and J. Senior, 
Macmillan, 1964, for some hair-raising examples). At the end of this section we shall 
describe how parts of a lattice may be drawn and used even for infinite groups. 

Note that isomorphic groups have the same lattices (i.e., the same directed graphs). 
Nonisomorphic groups may also have identical lattices (this happens for two groups of 
order 16 - see the following exercises). Since the lattice of subgroups is only part of 
the data we shall carry in our descriptors of a group, this will not be a serious drawback 
(indeed, it might even be useful in seeing when two nonisomorphic groups have some 
common properties). 

Examples 
Except for the cyclic groups (Example 1 )  we have not proved that the following lattices 
are correct (e.g., contain all subgroups of the given group or have the right joins and 
intersections). For the moment we shall take these facts as given and, as we build up more 
theory in the course of the text, we shall assign as exercises the proofs that these are indeed 
correct 
(1) For G = Z11 � 'll/ n'll, by Theorem 7 the lattice of subgroups of G is the lattice of 

divisors of n (that is, the divisors of n are written on a page with n at the bottom, 1 at 
the top and paths upwards from a to b if b I a). Some specific examples for various 
values of n follow. 

'll/27!. = ( 1 }  
I 

( 2 }  = {0} 

'll/47!. = ( 1 }  (note: ( 1 }  = ( 3  } )  
I 

( 2 }  
I 

( 4 }  = {0} 

7lj87l = ( 1 } (note: ( 1 } = ( 3 } = ( 5 } = ( 7 } ) 
I 

( 2 }  
I 

( 4 } 
I 

( 8 }  {0} 
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In general, if p is a prime, the lattice of 7'./ p'l?'. is 

Z;pnz 
I 

( p )  
I 

( p2 ) 
I 

( p3 ) 

I 

= ( 1 )  

= {0} 

(2) The Klein 4-group (Viergruppe), V4, is the group of order 4 with multiplication table 

1 a b c 
1 1 a b c 
a a 1 c b 
b b c 1 a 
c c b a 1 

and lattice 

V4 

/ I �  
( a )  ( b )  ( c )  

� I /  
Note that V4 is abelian and is not isomorphic to Z4 (why?). We shall see that Ds has 
an isomorphic copy of V4 as a subgroup, so it will not be necessary to check that the 
associative law holds for the binary operation defined above. 
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(3) The lattice of S3 is 

�s3 �23) J 
( ( !� / 

1 

(4) Using our usual notation for Ds = ( r, s } , the lattice of Ds is 

(5) The lattice of subgroups of Qs is 

Qg 

/ I �  
( i } ( j )  ( k ) 
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( - 1 )  

I 
1 



(6) The lattice of D16 is not a planar graph (cannot be drawn on a plane without lines 
crossing). One way of drawing it is 

7 \  
( sr5 ) ( sr ) 

In many instances in both theoretical proofs and specific examples we shall be 
interested only in information concerning two (or some small number of) subgroups of 
a given group and their interrelationships. To depict these graphically we shall draw a 
sublattice of the entire group lattice which contains the relevant joins and intersections. 
An unbroken line in such a sub lattice will not, in general, mean that there is no subgroup 
in between the endpoints of the line. These partial lattices for groups will also be used 
when we are dealing with infinite groups. For example, if we wished to discuss only 
the relationship between the subgroups ( sr2 , r4 } and ( r2 } of D16 we would draw the 
sub lattice 

1 
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Note that ( s ,  r2 ) and ( r4 ) are precisely the join and intersection, respectively, of these 
two subgroups in Dt6 · 

Finally, given the lattice of subgroups of a group, it is relatively easy to compute 
normalizers and centralizers. For example, in Ds we can see that C Ds (s) = ( s ,  r2 ) be
cause we first calculate that r2 E C Ds (s) (see Section 2). This proves ( s, r2 ) _:::: C Ds (s) 
(note that an element always belongs to its own centralizer). The only subgroups which 
contain ( s ,  r2 ) are that subgroup itself and all  of  D8. We cannot have C Ds (s) = D8 

because r does not commute with s (i.e . , r ¢ C Ds (s) ) . This leaves only the claimed 
possibility for C Ds (s) .  

E X E R C I S E S  

1. Let H and K be subgroups of G. Exhibit all possible sublattices which show only G, 1 ,  
H, K and their joins and intersections . What distinguishes the different drawings? 

2. In each of (a) to (d) list all subgroups of Dt6 that satisfy the given condition. 
(a) Subgroups that are contained in ( sr2 , r4 ) 
(b) Subgroups that are contained in ( sr 7, r4 ) 
(c) Subgroups that contain ( r4 ) 
(d) Subgroups that contain ( s ) . 

3. Show that the subgroup ( s, r2 ) of D8 is isomorphic to V4 .  
4. Use the given lattice to find all pairs of elements that generate Ds (there are 12 pairs). 

5. Use the given lattice to find all elements x E Dt6 such that Dt6 = ( x, s )  (there are 16 
such elements x ) . 

6. Use the given lattices to help find the centralizers of every element in the following groups: 
(a) Ds (b) Qs (c) S3 (d) Dt6·  

7. Find the center of Dt6·  

8. In each of the following groups find the normalizer of each subgroup: 
(a) S3 (b) Qs. 

9. Draw the lattices of subgroups of the following groups: 
(a) Z/ 16/Z (b) Z/24/Z (c) Zj48Z. [See Exercise 6 in Section 3.] 

10. Classify groups of order 4 by proving that if I G I  = 4 then G � Z4 or G � V4. [See 
Exercise 36, Section L . l .] 

11. Consider the group of order 16 with the following presentation: 

QD16 = ( a, T I a8 
= T2 

= 1 ,  aT = Ta3 ) 

(called the quasidihedral or semidihedral group of order 1 6). This group has three sub
groups of order 8: ( T, a2 ) � D8, ( a ) � Z8 and ( a2 , aT ) � Q8 and every proper 
subgroup is contained in one of these three subgroups. Fill in the missing subgroups in the 
lattice of all subgroups of the quasidihedral group on the following page, exhibiting each 
subgroup with at most two generators. (This is another example of a nonplanar lattice.) 

The next three examples lead to two nonisomorphic groups that have the same lattice of sub
groups. 

12. The group A = z2 X Z4 = ( a , b I a2 = b4 
= 1 ,  ab = ba ) has order 8 and has 

three subgroups of order 4: ( a , b2 ) � V4, ( b )  � Z4 and ( ab ) � Z4 and every proper 
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G 

/ �  
( ** )  ( o.4 , r ) ( ** ) ( ** ) ( ** )  

1 \  /� � 
( ra2 ) ( ** ) ( ** ) ( r ) ( a4 ) 

� 
1 

subgroup is contained in one of these three. Draw the lattice of all subgroups of A, giving 
each subgroup in terms of at most two generators. 

13. The group G = Z2 x Zg = ( x , y I x2 = y8 = 1 ,  xy = yx ) has order 16 and has three 
subgroups of order 8: ( x ,  y2 ) � Z2 x Z4, ( y )  � Z8 and ( xy ) � Z8 and every proper 
subgroup is contained in one of these three. Draw the lattice of all subgroups of G, giving 
each subgroup in terms of at most two generators (cf. Exercise 12).  

14. Let M be the group of order 16 with the following presentation: 

( u, v I u2 = v8 = 1 ,  vu = uv5 ) 

(sometimes called the modular group of order 16). It has three subgroups of order 8: 
( u ,  v2 ) , ( v )  and ( uv ) and every proper subgroup is  contained in  one of these three. 
Prove that ( u, v2 ) � z2 X Z4, ( v )  � Zg and ( uv ) � Zg . Show that the lattice of 
subgroups of M is the same as the lattice of subgroups of Z2 x Zg (cf. Exercise 13) but 
that these two groups are not isomorphic. 

15. Describe the isomorphism type of each of the three subgroups of D16 of order 8. 
16. Use the lattice of subgroups of the quasidihedral group of order 16 to show that every 

element of order 2 is contained in the proper subgroup ( r, a2
) (cf. Exercise 1 1 ). 

17. Use the lattice of subgroups of the modular group M of order 16 tb show that the set 
{x E M  1 x2 = 1 }  is a subgroup of M isomorphic to the Klein 4-group (cf. Exercise 14). 

18. Use the lattice to help find the centralizer of every element of Q D16 ( cf. Exercise 1 1  ). 
19. Use the lattice to help find Nv16 ( { s , r4 ) ) .  
20. Use the lattice of subgroups of Q D16 ( cf. Exercise 1 1) to help find the normalizers 

(a) NQv16 ( ( ra )) (b) NQv16 (( r, a4 )) . 
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CHAPTER 3 

Q u oti e n t  Gro u ps a nd 
H o m o m orp h i s m s  

3.1 DEFIN ITIONS AND EXAM PLES 

In this chapter we introduce the notion of a quotient group of a group G, which is 
another way of obtaining a "smaller" group from the group G and, as we did with 
subgroups, we shall use quotient groups to study the structure of G.  The structure of 
the group G is reflected in the structure of the quotient groups and the subgroups of G. 
For example, we shall see that the lattice of subgroups for a quotient of G is reflected 
at the "top" (in a precise sense) of the lattice for G whereas the lattice for a subgroup 
of G occurs naturally at the "bottom." One can therefore obtain information about the 
group G by combining this information and we shall indicate how some classification 
theorems arise in this way. 

The study of the quotient groups of G is essentially equivalent to the study of the 
homomorphisms of G, i.e., the maps of the group G to another group which respect 
the group structures. If cp is a homomorphism from G to a group H recall that the 
fibers of cp are the sets of elements of G projecting to single elements of H, which we 
can represent pictorially in Figure 1 ,  where the vertical line in the box above a point a 
represents the fiber of cp over a. 

. . . • • • 

1 1 1 � 1 j 
G 

H Fig. l 
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The group operation in H provides a way to multiply two elements in the image 
of cp (i .e., two elements on the horizontal line in Figure 1) . This suggests a natural 
multiplication of the fibers lying above these two points making the set of fibers into 
a group: if X a is the fiber above a and Xb is the fiber above b then the product of Xa 
with Xb is defined to be the fiber Xab above the product ab, i.e., XaXb = Xab · This 
multiplication is associative since multiplication is associative in H, the identity is the 
fiber over the identity of H, and the inverse of the fiber over a is the fiber over a -l , 
as is easily checked from the definition. For example, the associativity is proved as 
follows: (XaXb)Xc = (Xab)Xc = Xcablc and Xa (XbXc) = Xa (Xbc) = Xa(bcJ · Since 
(ab)c = a (bc) in H, (XaXb)Xc = Xa (XbXc) . Roughly speaking, the group G is 
partitioned into pieces (the fibers) and these pieces themselves have the structure of a 
group, called a quotient group of G (a formal definition follows the example below). 

Since the multiplication of fibers is defined from the multiplication in H, by con
struction the quotient group with this multiplication is naturally isomorphic to the image 
of G under the homomorphism cp (fiber Xa is identified with its image a in H). 

Example 
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Let G = Z, let H = Zn = ( x } be the cyclic group of order n and define q; : Z ---+ Zn by 
q;(a) = xa . Since 

it follows that q; is a homomorphism (note that the operation in Z is addition and the 
operation in Zn is multiplication). Note also that q; is surjective. The fiber of q; over xa is 
then 

q;-1 (xa) = {m E Z I xm = xa } = {m E Z I xm-a = 1 }  

= { m  E Z I n  divides m - a} (by Proposition 2.3) 

= {m E Z I m = a  (mod n)} = ii, 

i.e., the fibers of q; are precisely the residue classes modulo n. Figure 1 here becomes: 

0 1 a n - 1  
±n l±n a±n (n- l)±n 
±2n 1±2n . . .  a±2n . . .  (n- 1)±2n 
±3n 1 ±3n a±3n (n- 1)±3n 

1 1 1 1 
Zn xo xl xa xn-1 

Fig. 2 
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The multiplication in Zn isjust x0 xb = xa+b . The corresponding fibers are a,  b, and a +  b, 
so the corresponding group operation for the fibers is ii · b = a + b. This is just the group 
'l.fn'l. under addition, a group isomorphic to the image of f1! (all of Zn). 

The identity of this group (the fiber above the identity in Zn) consists of all the multiples 
of n in '!., namely n'l., a subgroup of '!., and the remaining fibers are just translates, a + n'l., 
of this subgroup. The group operation can also be defined directly by taking representatives 
from these fibers, adding these representatives in '!. and taking the fiber containing this sum 
(this was the original definition of the group '!./ n'l.). From a computational point of view 
computing the product of ii and b by simply adding representatives a and b is much easier 
than first computing the image of these fibers under f/! (namely, x0 and xh), multiplying 
these in H (obtaining xa+b) and then taking the fiber over this product. 

We first consider some basic properties of homomorphisms and their fibers. The 
fiber of a homomorphism (/) : G � H lying above the identity of H is given a name: 

Definition. If (/) is a homomorphism (/) : G � H, the kernel of (/) is the set 

{g E G I ({J(g) = l }  
and will be denoted by ker (/) (here 1 is the identity of H). 

Proposition 1. Let G and H be groups and let (/) : G � H be a homomorphism. 
(1) ({J( l c )  = 1 H, where 1 c  and l H  are the identities of G and H, respectively. 
(2) ({J(g-1) = ({J(g)-1 for all g E G. 
(3) ({J(gn) = ({J(g)n for all n E Z. 
( 4) ker (/) is a subgroup of G. 
(5) im ( (/) ), the image of G under (/), is  a subgroup of H.  

Proof" ( 1 )  Since qJ( 1 c )  = ({J( l c 1 c )  = qJ( 1 c )({J( l c ), the cancellation laws show 
that ( 1 )  holds. 

(2) ({J( l c) = qJ(gg-1 ) = qJ(g)qJ (g-1 ) and, by part ( 1 ), ({J( l c)  = 1 H, hence 

lH = (/J(g)qJ(g-1 ) .  

Multiplying both sides on the left by ({J(g)-1 and simplifying gives (2) . 
(3) This is an easy exercise in induction for n E z+. By part (2), conclusion (3) 

holds for negative values of n as well. 
(4) Since 1 c  E ker qJ, the kernel of (/) is not empty. Let x, y E ker qJ, that is 

({J(x) = ({J(y) = l H .  Then 

({J(xy-1) = ({J(X)({J(y-1 ) = ({J(X)({J(y)- 1 = 1 H 1 [/ = l H  

that is, xy-1 E ker qJ .  B y  the subgroup criterion, ker (/) :::; G .  
(5) Since (/) ( 1 c )  = l H, the identity of H lies in the image of(/), s o  im( (/)) is nonempty. 

If x and y are in im(qJ), say x = ({J(a), y = qJ(b), then y-1 = qJ(b-1) by (2) so that 
xy-1 = qJ(a)qJ(b-1 ) = qJ (ab-1) since (/)  is a homomorphism. Hence also xy-I is in 
the image of (/), so im(({J) is a subgroup of H by the subgroup criterion. 

We can now define some terminology associated with quotient groups. 
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Definition. Let cp : G ---+ H be a homomorphism with kernel K .  The quotient group 
or factor group, G I K (read G modulo K or simply G mod K), is the group whose 
elements are the fibers of cp with group operation defined above: namely if X is the 
fiber above a and Y is the fiber above b then the product of X with Y is defined to be 
the fiber above the product ab. 

The notation emphasizes the fact that the kernel K is a single element in the group 
G I K and we shall see below (Proposition 2) that, as in the case of Zl nZ above, the 
other elements of G I K are just the "translates" of the kernel K.  Hence we may think 
of G I K as being obtained by collapsing or "dividing out" by K (or more precisely, by 
equivalence modulo K). This explains why G I K is referred to as a "quotient" group. 

The definition of the quotient group G I K above requires the map cp explicitly, 
since the multiplication of the fibers is performed by first projecting the fibers to H 
via cp, multiplying in H and then determining the fiber over this product. Just as for 
ZlnZ above, it is also possible to define the multiplication of fibers directly in terms 
of representatives from the fibers. This is computationally simpler and the map cp does 
not enter explicitly. We first show that the fibers of a homomorphism can be expressed 
in terms of the kernel of the homomorphism just as in the example above (where the 
kernel was nZ and the fibers were translates of the form a + nZ). 

Proposition 2. Let cp : G ---+ H be a homomorphism of groups with kernel K. Let 
X E GIK be the fiber above a, i.e., X = cp- 1 (a) .  Then 

(1) For any u E X, X =  {uk I k E  K} 
(2) For any u E X, X =  {ku I k E  K}. 

Proof We prove ( 1 )  and leave the proof of (2) as an exercise. Let u E X so, by 
definition of X, cp(u) = a. Let 

u K = { uk I k E K} .  

We first prove uK � X. For any k E K, 

cp(uk) = cp(u)cp(k) 
= cp(u) l 
= a, 

(since cp is a homomorphism) 

(since k E ker cp) 

that is, uk E X. This proves uK � X. To establish the reverse inclusion suppose 
g E X and let k = u - l g. Then 

cp(k) = cp(u-1 )cp(g) = cp(u)-1cp(g) (by Proposition 1)  
= a-1a = 1 .  

Thus k E ker cp. Since k = u-1g, g = u k  E uK, establishing the inclusion X �  uK. 
This proves (1) .  

The sets arising in Proposition 2 to describe the fibers of a homomorphism cp are 
defined for any subgroup K of G, not necessarily the kernel of some homomorphism 
(we shall determine necessary and sufficient conditions for a subgroup to be such a 
kernel shortly) and are given a name: 

76 Chap. 3 Quotient Groups and Homomorphisms 



Definition. For any N _::::: G and any g E G let 

g N = {gn I n E N} and N g = {ng I n E N} 

called respectively a left coset and a right coset of N in G. Any element of a coset is 
called a representative for the coset. 

We have already seen in Proposition 2 that if N is the kernel of a homomorphism 
and gi is any representative for the coset gN then g1N = gN (and if gi E Ng then 
N gi = N g). We shall see that this fact is valid for arbitrary subgroups N in Proposition 
4 below, which explains the terminology of a representative. 

If G is an additive group we shall write g + N and N + g for the left and right 
cosets of N in G with representative g, respectively. In general we can think of the left 
coset, g N, of N in G as the left translate of N by g. (The reader may wish to review 
Exercise 1 8  of Section 1 .7 which proves that the right cosets of N in G are precisely 
the orbits of N acting on G by left multiplication.) 

In terms of this definition, Proposition 2 shows that the fibers of a homomorphism 
are the left cosets of the kernel (and also the right cosets of the kernel), i.e., the elements 
of the quotient GIK are the left cosets gK, g E G. In the example of 7L.In7L. the 
multiplication in the quotient group could also be defined in terms of representatives 
for the cosets. The following result shows the same result is true for G I K in general 
(provided we know that K is the kernel of some homomorphism), namely that the 
product of two left cosets X and Y in G I K is computed by choosing any representative 
u of X, any representative v of Y, multiplying u and v in G and forming the coset 
(uv)K .  

Theorem 3 .  Let G be a group and let K be the kernel of some homomorphism from 
G to another group. Then the set whose elements are the left cosets of K in G with 
operation defined by 

u K  o vK = (uv)K 

forms a group, G I K.  I n  particular, this operation is well defined i n  the sense that i f  u I is 
any element in u K  and VI is any element in vK, then UI VI E uvK, i.e., U tVI K = uvK 
so  that the multiplication does not depend on the choice of  representatives for the cosets. 
The same statement is true with "right coset" in place of "left coset." 

Proof: Let X, Y E Gl K and let Z = XY in Gl K, so that by Proposition 2(1 )  X, 
Y and Z are (left) cosets of K. By assumption, K is the kernel of some homomorphism 
ffJ : G --+ H so X = f/J-I (a) and Y = f{J-1 (b) for some a, b E H .  By definition of 
the operation in GIK, Z = f{J-I (ab) . Let u and v be arbitrary representatives of X, 
Y, respectively, so that f{J(u) = a, f{J(v) = b and X =  uK,  Y = vK. We must show 
uv  E Z. Now 

UV E Z {} U V  E f{J-I (ab) 
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Since the latter equality does hold, uv e Z hence Z is the (left) coset uvK. (Exercise 
2 below shows conversely that every z e Z can be written as uv ,  for some u e X and 
v e Y.) This proves that the product of X with Y is the coset uvK for any choice 
of representatives u e X, v e Y completing the proof of the first statements of the 
theorem. The last statement in the theorem follows immediately since, by Proposition 
2, uK = Ku and vK = Kv for all u and v in G .  

In  terms of Figure 1 ,  the multiplication in  G I K via representatives can be pictured 
as in the following Figure 3 .  

u 
' - - - - ..... -

v ...... 
\ 

\ 
v 

j j j 
,.. � -- - - - -- ........ 

� '\ ...... . 
a b ab 

uv 

G 

H 

Fig. 3 

We emphasize the fact that the multiplication is independent of the panicular rep
resentatives chosen. Namely, the product (or sum, if the group is written additively) of 
two cosets X and Y is the coset uvK containing the product uv where u and v are any 
representatives for the cosets X and Y, respectively. This process of considering only 
the coset containing an element, or "reducing mod K" is the same as what we have been 
doing, in particular, in ZlnZ. A useful notation for denoting the coset uK containing 
a representative u is u .  With this notation (which we introduced in the Preliminaries in 
dealing with Zl nZ), the quotient group G I K is denoted G and the product of elements 
u and ii is simply the coset containing uv ,  i.e., uv .  This notation also reinforces the fact 
that the cosets uK in G I K are elements u in G I K .  

Examples 
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(1) The first example in this chapter of the homomorphism rp from ll to Zn has fibers the 
left (and also the right) cosets a + nil of the kernel nil. Theorem 3 proves that these 
cosets form a group under addition of representatives, namely Ill nil, which explains 
the notation for this group. The group is naturally isomorphic to its image under rp, so 
we recover the isomorphism llf nil � Zn of Chapter 2. 

(2) If rp : G � H is an isomorphism, then K = 1 ,  the fibers of rp are the singleton 
subsets of G and so G/1 � G. 
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(3) Let G be any group, let H = I be the group of order I and define cp : G � H by 
cp(g) = I ,  for all g E G. It is immediate that cp is a homomorphism. This map is called 
the trivial homomorphism. Note that in this case ker cp = G and G f G is a group with 
the single element, G, i.e., GfG ;::::: Z1 = { I } . 

(4) Let G = IR2 (operation vector addition), let H = IR (operation addition) and define 
cp : JR2 � lR by cp( (x , y) ) = x. Thus cp is projection onto the x-axis. We show cp is a 
homomorphism: 

cp( (XJ ,  Y I)  + (X2, Y2) ) = cp( (XI + X2 , YI + Y2) )  

= XJ + X2 = cp( (XJ , YI ) )  + ({!( (X2 , Y2) ) .  

Now 

ker cp = { (x ,  y) I cp( (x , y) ) = 0} 

= { (x , y) I x = 0} = the y-axis. 

Note that ker cp is indeed a subgroup of JR2 and that the fiber of cp over a E lR is the 
translate of the y-axis by a, i.e., the line x = a.  This is also the left (and the right) coset 
of the kernel with representative (a , 0) (or any other representative point projecting to 
a) : 

(a , 0) = (a,  0) + y-axis. 

Hence Figure I in this example becomes 

y 

- I  0 

j j .  j 
- 1  0 

- - - - - - - - _ _ _ _  .,. 
a X 

j 
a 

IR.2 

Fig. 4 

The group operation (written additively here) can be described either by using the map 
cp: the sum of the line (x = a) and the line (x = b) is the line (x = a +b); or directly in 
terms of coset representatives: the sum of the vertical line containing the point (a , YI)  
and the vertical line containing the point (b ,  Y2) is  the vertical line containing the point 
(a + b, y1 + Y2) . Note in particular that the choice of representatives of these vertical 
lines is not important (i.e., the y-coordinates are not important). 

(5) (An example where the group G is non-abelian.) Let G = Qg and let H = V4 be the 
Klein 4-group (Section 2.5, Example 2). Define cp : Qg � V4 by 

cp(± I )  = I ,  cp(±i) = a, cp(±j) = b, cp(±k) = c. 
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The check that q; is a homomorphism is left as an exercise - relying on symmetry 
minimizes the work in showing q;(xy) = q;(x)q;(y) for all x and y in Qg. It is clear 
that q; is smjective and that ker q; = { ± 1 } .  One might think of q; as an "absolute value" 
function on Qs so the fibers of q; are the sets E = {±1 }, A = {±i } ,  B = {±j } and 
C = {±k}, which are collapsed to 1 ,  a, b, and c respectively in Qs/( ± 1 ) and these 
are the left (and also the right) cosets of ker q; (for example, A =  i · ker q; = {i ,  -i }  = 

ker q; . i) .  

By Theorem 3, if we are given a subgroup K of a group G which we know is the 
kernel of some homomorphism, we may define the quotient G I K without recourse to 
the homomorphism by the multiplication u K v K  = uvK.  This raises the question of 
whether it is possible to define the quotient group GIN similarly for any subgroup N 
of G. The answer is no in general since this multiplication is not in general well defined 
( cf. Proposition 5 later). In fact we shall see that it is possible to define the structure 
of a group on the cosets of N if and only if N is the kernel of some homomorphism 
(Proposition 7). We shall also give a criterion to determine when a subgroup N is such 
a kernel - this is the notion of a normal subgroup and we shall consider non-normal 
subgroups in subsequent sections. 

We first show that the cosets of an arbitrary subgroup of G partition G (i.e., their 
union is all of G and distinct cosets have trivial intersection). 

Proposition 4. Let N be any subgroup of the group G. The set of left cosets of N in G 
form a partition of G. Furthermore, for all u ,  v E G, uN = vN if and only if v-1 u E N  
and in particular, u N = v N if and only if u and v are representatives of the same coset. 

Proof First of all note that since N is a subgroup of G, 1 E N. Thus g = g · 1 E g N 
for all g E G, i.e., 

G = U gN. 
geG 

To show that distinct left cosets have empty intersection, suppose uN n vN ¥- 0. We 
show uN = vN.  Let x E uN n vN. Write 

x = un = vm , for some n, m E N. 

In the latter equality multiply both sides on the right by n-1 to get 

where m1  = mn-1 E N. 

Now for any element ut of uN (t E N), 

ut = (vm 1 )t = v (m 1 t) E vN. 

This proves u N f; v N. By interchanging the roles of u and v one obtains similarly that 
vN f; uN. Thus two cosets with nonempty intersection coincide. 

By the first part of the proposition, uN = v N  if and only if u E vN if and only 
if u = vn , for some n E N if and only if v- 1u E N, as claimed. Finally, v E u N  is 
equivalent to saying v is a representative for uN, hence uN = vN if and only if u and 
v are representatives for the same coset (namely the coset uN = vN). 
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Proposition 5. Let G be a group and let N be a subgroup of G. 
(1) The operation on the set of left cosets of N in G described by 

uN · vN = (u v)N 

is well defined if and only if gng-I E N  for all g E G and all n E N. 
(2) If the above operation is well defined, then it makes the set of left cosets of N 

in G into a group. In particular the identity of this group is the coset lN and 
the inverse of gN is the coset g-1 N i.e., (gN)-1  = g-I N. 

Proof: ( 1)  Assume first that this operation is well defined, that is, for all u ,  v E G, 

if u ,  U I E uN and v ,  VI E vN then u vN = u 1 v1 N. 

Let g be an arbitrary element of G and let n be an arbitrary element of N. Letting 
u = 1 , u 1 = n and v = VI = g-1 and applying the assumption above we deduce that 

lg-1 N = ng-IN i.e., g-I N =  ng-I N. 

Since 1 E N, ng-1 · 1 E ng-1 N. Thus ng-1 E g- I N, hence ng-1 = g-Ini>  for some 
n 1 E N. Multiplying both sides on the left by g gives gng -I  = n 1 E N, as claimed. 

Conversely, assume gng-I E N for all g E G and all n E N. To prove the operation 
stated above is well defined let u ,  u i  E uN and v ,  v1 E vN. We may write 

U I = un and VI = vm, for some n ,  m E N. 

We must prove that U I VI E u vN:  

U I VI = (un) (vm) = u(vv- 1 )nvm 

= (u v) (v- 1 nv)m = (u v) (nim) ,  

where ni = v-Inv = (v-I)n(v- 1 )- I  i s  an element of  N by assumption. Now N is  
closed under products, so n 1m E N. Thus 

U I V1 = (u v)n2 , for some n2 E N. 

Thus the left cosets uvN and u i v1 N contain the common element u i v1 . By the pre
ceding proposition they are equal. This proves that the operation is well defined. 

{2) If the operation on cosets is well defined the group axioms are easy to check 
and are induced by their validity in G.  For example, the associative law holds because 
for all u ,  v, w E G, 

(uN) (vNwN) = uN(v wN) 

= u (v w)N 

= (u v)wN = (uNvN)(wN), 

since u (v w) = (uv)w in G. The identity in GjN is the coset IN and the inverse of 
g N is g-I N as is immediate from the definition of the multiplication. 

As indicated before, the subgroups N satisfying the condition in Proposition 5 for 
which there is a natural group structure on the quotient G j N are given a name: 
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Definition. The element gng-1 is called the conjugate of n E N by g. The set 
gNg-1 = {gng-1 I n E N} is called the conjugate of N by g. The element g is 
said to nonnalize N if gN g-1 = N. A subgroup N of a group G is called nonnal if 
every element of G normalizes N, i.e., if gNg-1 = N for all g E G. If N is a normal 
subgroup of G we shall write N � G. 

Note that the structure of G is reflected in the structure of the quotient G 1 N when 
N is a normal subgroup (for example, the associativity of the multiplication in GIN is 
induced from the associativity in G and inverses in G 1 N are induced from inverses in 
G). We shall see more of the relationship of G to its quotient G 1 N when we consider 
the Isomorphism Theorems later in Section 3 .  

We summarize our results above as Theorem 6. 

Theorem 6. Let N be a subgroup of the group G. The following are equivalent: 
(1) N � G 
(2) Nc (N) = G (recall Nc (N) is the normalizer in G of N) 
(3) g N = N g for all g E G 
(4) the operation on

.
left cosets of N in G described in Proposition 5 makes the set 

of left cosets into a group 
(5) gNg-1 £;; N for all g E G. 

Proof" We have already done the hard equivalences; the others are left as exercises. 

As a practical matter, one tries to minimize the computations necessary to determine 
whether a given subgroup N is normal in a group G. In particular, one tries to avoid as 
much as possible the computation of all the conjugates gng-1 for n E N and g E G. For 
example, the elements of N itself normalize N since N is a subgroup. Also, if one has a 
set of generators for N, it suffices to check that all conjugates of these generators lie in 
N to prove that N is a normal subgroup (this is because the conjugate of a product is the 
product of the conjugates and the conjugate of the inverse is the inverse of the conjugate) 
- this is Exercise 26 later. Similarly, if generators for G are also known, then it suffices 
to check that these generators for G normalize N. In particular, if generators for both 
N and G are known, this reduces the calculations to a small number of conjugations 
to check. If N is a finite group then it suffices to check that the conjugates of a set 
of generators for N by a set of generators for G are again elements of N (Exercise 
29). Finally, it is often possible to prove directly that Nc (N) = G without excessive 
computations (some examples appear in the next section), again proving that N is a 
normal subgroup of G without mindlessly computing all possible conjugates gng-1 • 

We now prove that the normal subgroups are precisely the same as the kernels of 
homomorphisms considered earlier. 

Proposition 7. A subgroup N of the group G is normal if and only if it is the kernel of 
some homomorphism. 

Proof" If N is the kernel of the homomorphism cp, then Proposition 2 shows that 
the left cosets of N are the same as the right cosets of N (and both are the fibers of the 
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map cp). By (3) of Theorem 6, N is then a normal subgroup. (Another direct proof of 
this from the definition of normality for N is given in the exercises). 

Conversely, if N ::::1 G, let H = GIN and define rr : G -+ GIN by 

rr(g) = gN for all g E G. 

By definition of the operation in GIN, 

rr(gtgz) = (gt gz)N = g1N gzN = rr(gt )rr(gz) .  
This proves rr i s  a homomorphism. Now 

ker rr = {g E G I rr(g) = IN} 
= {g E G I gN = IN} 
= {g E G I g E N} = N. 

Thus N is the kernel of the homomorphism rr. 
The homomorphism rr constructed above demonstrating the normal subgroup N 

as the kernel of a homomorphism is given a name: 

Definition. Let N ::::1 G. The homomorphism rr : G -+ GIN defined by rr (g) = g N 
is called the natural projection ( homomorphism)1 of G onto GIN. If H :::: GIN is a 
subgroup of GIN, the complete preimage Of H in G is the preimage of H under the 
natural projection homomorphism. 

The complete pre image of a subgroup of GIN is a subgroup of G ( cf. Exercise 1)  
which contains the subgroup N since these are the elements which map to the identity 
1 E H. We shall see in the Isomorphism Theorems in Section 3 that there is a natural 
correspondence between the subgroups of G that contain N and the subgroups of the 
quotient GIN . 

We now have an "internal" criterion which determines precisely when a subgroup 
N of a given group G is the kernel of some homomorphism, namely, 

NG(N) = G. 

We may thus think of the normalizer of a subgroup N of G as being a measure of 
"how close" N is to being a normal subgroup (this explains the choice of name for this 
subgroup). Keep in mind that the property of being normal is an embedding property, 
that is, it depends on the relation of N to G, not on the internal structure of N itself 
(the same group N may be a normal subgroup of G but not be normal in a larger group 
containing G). 

We began the discussion of quotient groups with the existence of a homomorphism 
cp of G to H and showed the kernel of this homomorphism is a normal subgroup N of 
G and the quotient GIN (defined in terms of fibers originally) is naturally isomorphic 

1 The word "natural" has a precise mathematical meaning in the theory of categories; for our 
purposes we use the term to indicate that the definition of this homomorphism is a "coordinate free" 
projection i.e., is described only in terms of the elements themselves, not in terms of generators for G 
or N (cf. Appendix II). 

Sec. 3.1 Definitions and Examples 83 



to the image of G under q; in H. Conversely, if N :s:J G, we can find a group H 
(namely, GIN) and a homomorphism n: : G -+ H such that ker n: = N (namely, 
the natural projection). The study of homomorphic images of G (i.e., the images of 
homomorphisms from G into other groups) is thus equivalent to the study of quotient 
groups of G and we shall use homomorphisms to produce normal subgroups and vice 
versa. 

We developed the theory of quotient groups by way of homomorphisms rather than 
simply defining the notion of a normal subgroup and its associated quotient group to 
emphasize the fact that the elements of the quotient are subsets (the fibers or cosets of the 
kernel N) of the original group G.  The visualization in Figure I also emphasizes that N 
(and its cosets) are projected (or collapsed) onto single elements in the quotient Gl N. 
Computations in the quotient group GIN are performed by taking representatives from 
the various cosets involved. 

Some examples of normal subgroups and their associated quotients follow. 

Examples 
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Let G be a group. 
(1) The subgroups 1 and G are always normal in G; Gil � G and GI G � 1 .  
(2) If G i s  an abelian group, any subgroup N of G i s  normal because for all g E G and 

all n E N, 
gng-1 = gg-1n = n E N. 

Note that it is important that G be abelian, not just that N be abelian. The structure of 
G 1 N may vary as we take different subgroups N of G. For instance, if G = Z, then 
every subgroup N of G is cyclic: 

N = { n ) = { -n ) = nZ, for some n E Z 

and GIN = ZlnZ is a cyclic group with generator I = 1 + nZ (note that 1 is a 
generator for G). 

Suppose now that G = Zk is the cyclic group of order k. Let x be a generator of 
G and let N � G. By Proposition 2.6 N = { xd ) ,  where d is the smallest power of x 
which lies in N. Now 

GIN = {gN I g E G} = {xa N I a E Z} 

and since xa N = (xN)a (see Exercise 4 below), it follows that 

GIN = { xN ) i.e., G 1 N is cyclic with x N as a generator. 

By Exercise 5 below, the order of xN in GIN equals d. By Proposition 2.5, d = :�: . 
In summary, 

quotient groups of a cyclic group are cyclic 

and the image of a generator g for G is a generator g for the quotient. If in addition G 

is a finite cyclic group and N � G, then I GI N l  = :�: gives a formula for the order 

of the quotient group. 
(3) If N � Z(G), then N � G because for all g E G and all n E N, gng-1 = n E N, 

generalizing the previous example (where the center Z(G) is all of G). Thus, in 
particular, Z(G) � G. The subgroup { - 1 ) of Qs was previously seen to be the kernel 
of a homomorphism but since { - 1 ) = Z(Qs) we obtain normality of this subgroup 
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now in another fashion. We already saw that Qsl( - 1 ) � V4. The discussion for 
Ds in the next paragraph could be applied equally well to Qs to give an independent 
identification of the isomorphism type of the quotient. 

Let G = Ds and let Z = ( r2 ) = Z(Ds) .  Since Z = { 1 ,  r2} ,  each coset, gZ, 
consists of the two element set {g, gr2} .  Since these cosets partition the 8 elements of 
Ds into pairs, there must be 4 (disjoint) left cosets of Z in Ds : 

I = 1Z,  r = rZ, s = sZ,  and rs = rsZ. 

Now by the classification of groups of order 4 (Exercise 10, Section 2.5) we know that 
DsiZ(Ds) � Z4 or V4. To determine which of these two is correct (i.e., determine 
the isomorphism type of the quotient) simply observe that 

(r)2 = r2Z =  l Z = I 
(s)2 = s2Z =  l Z = I 

(rs)2 = (rs)2 Z = 1 Z  = I  
so every nonidentity element in DsiZ has order 2. In particular there is no element 
of order 4 in the quotient, hence Ds 1 Z is not cyclic so Ds 1 Z ( Ds) � V4. 

E X E R C I S E S 

Let G and H be groups. 

1. Let rp : G � H be a homomorphism and let E be a subgroup of H. Prove that rp-1 (E) ::::: G 
(i.e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If 
E � H prove that rp- 1 (£) � G. Deduce that ker rp � G . 

2. Let rp : G � H be a homomorphism of groups with kernel K and let a, b E rp(G) . 

Let X E GIK be the fiber above a and let Y be the fiber above b, i.e. , X = rp-1 (a),  
Y = rp-1 (b) .  Fix an element u of X (so rp(u) = a). Prove that if XY = Z in the quotient 
group G I K and w is any member of Z, then there is some v E Y such that uv = w. [Show 
u-1 w E Y.] 

3. Let A be an abelian group and let B be a subgroup of A. Prove that A 1 B is abelian. Give 
an example of a non-abelian group G containing a proper normal subgroup N such that 
GIN is abelian. 

4. Prove that in the quotient group GIN, (g N)a = ga N for all a E Z. 

5. Use the preceding exercise to prove that the order of the element g N in G 1 N is n, where 
n is the smallest positive integer such that gn E N (and g N has infinite order if no such 
positive integer exists) . Give an example to show that the order of gN in GIN may be 
strictly smaller than the order of g in G. 

6. Define rp : !Rx --+ {±1 }  by letting rp(x) be x divided by the absolute value of x. Describe 
the fibers of rp and prove that rp is a homomorphism. 

7. Define rr : JR2 � IR by rr(  (x , y) ) = x + y. Prove that rr is a sutjective homomorphism 
and describe the kernel and fibers of rr geometrically. 

8. Let rp : !Rx --+ !Rx be the map sending x to the absolute value of x. Prove that rp is a 
homomorphism and find the image of rp. Describe the kernel and the fibers of rp. 

9. Define rp : ex � JRX by rp(a + hi) = a2 + b2 . Prove that rp is a homomorphism and find 
the image of rp. Describe the kernel and the fibers of rp geometrically (as subsets of the 
plane). 
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10. Let cp : '7lf87l � 7lj47l by cp(a) = a. Show that this is a well defined, suljective 
homomorphism and describe its fibers and kernel explicitly (showing that cp is well defined 
involves the fact that a has a different meaning in the domain and range of cp ). 

11. Let F be a field and let G = { ( � � )  I a, b, c E F, ac -=/; 0} � GLz(F). 

(a) Prove that the map cp : ( � � ) 1-+ a is a suljective homomorphism from G onto 

Fx (recall that F x  is the multiplicative group of nonzero elements in F). Describe 
the fibers and kernel of cp. 

(b) Prove that the map 1/r : ( � � )  1-+ (a , c) is a suljective homomorphism from G 

onto F x x F x .  Describe the fibers and kernel of 1/r .  

(c) Let H = { ( � � ) I b E  F}.  Prove that H is isomorphic to the additive group F.  

12. Let G be the additive group of real numbers, let H be  the multiplicative group of  complex 
numbers of absolute value 1 (the unit circle S1 in the complex plane) and let cp : G � H 

be the homomorphism cp : r 1-+ e2rrir . Draw the points on a real line which lie in the 
kernel of cp. Describe similarly the elements in the fibers of cp above the points - 1, i ,  and 
e4n:if3 of H.  (Figure 1 of the text for this homomorphism cp is usually depicted using the 
following diagram.) 

l cp 

� H�S' Fig. S 

13. Repeat the preceding exercise with the map cp replaced by the map cp : r 1-+ e4n:ir . 

14. Consider the additive quotient group Qf'll. 
(a) Show that every coset of 7l in Q contains exactly one representative q E Q in the 

range O � q  < 1 .  
(b) Show that every element of Qj'll has finite order but that there are elements of arbi

trarily large order. 
(c) Show that Qf'll is the torsion subgroup of Rj'll (cf. Exercise 6, Section 2.1 ) .  
(d) Prove that Qj'll is isomorphic to the multiplicative group of  root of unity in  e x .  

15. Prove that a quotient of a divisible abelian group by any proper subgroup i s  also divisible. 
Deduce that Qf'll is divisible (cf. Exercise 19, Section 2.4). 

16. Let G be a group, let N be a normal subgroup of G and let G = GfN. Prove that if 
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G = ( x , y ) then G = ( :X, y ) .  Prove more generally that if G = ( S ) for any subset S of 
G, then G = ( S ) .  

17. Let G be the dihedral group of order 1 6  (whose lattice appears in Section 2.5): 

G = ( r, s I r8 = s2 = l ,  rs = sr- 1 ) 

and let G = G I ( r4 ) be the quotient of G by the subgroup generated by r4 (this subgroup 
is the center of G, hence is normal). 
(a} Show that the order of G is 8.  
(b) Exhibit each element of G in the form sarh, for some integers a and b.  
(c) Find the order of each of the elements of G exhibited in (b). 
(d) Write each of the following elements of G in the form s<'rb, for some integers a and 

b as in (b): rs, sr-2s, s - 1 r-1 sr . 
(e) Prove that H = { s, r2 ) is a normal subgroup of G and H is isomorphic to the Klein 

4-group. Describe the isomorphism type of the complete preimage of H in G. 
(f) Find the center of G and describe the isomorphism type of GIZ(G). 

18. Let G be the quasidihedral group of order 16 (whose lattice was computed in Exercise 1 1  
of Section 2.5): 

G = ( a, 1: I a 8  = -r 2 = 1, a-r = -r a 3 ) 

and let G = G I ( a4 ) be the quotient of G by the subgroup generated by a4 (this subgroup 
is the center of G, hence is normal). 
(a) Show that the order of G is 8.  
(b) Exhibit each element of G in the form "Fob, for some integers a and b. 
(c) Find the order of each of the elements of G exhibited in (b). 
(d) Write each of the following elements of G in the form "Fob, for some integers a and 

b as in (b): a -r, -r a -2 -r ,  -r - 1 a -1 -r a .  
(e) Prove that G � Dg . 

19. Let G be the modular group of order 16 (whose lattice was computed in Exercise 14 of 
Section 2.5): 

G = ( u ,  v I  u2 = v8 = I , vu = u v5 ) 

and let G = G 1 ( v4 ) be the quotient of G by the subgroup generated by v4 (this subgroup 
is contained in the center of G, hence is normal). 
(a) Show that the order of G is 8.  
(b) Exhibit each element of G in the form ua vb' for some integers a and b.  
(c) Find the order of each of the elements of G exhibited in (b). 
(d) Write each of the following elements of G in the form uavh, for some integers a and 

b as in (b): vu, uv-2u, u - 1 v-1 u v. 
(e) Prove that G is abelian and is isomorphic to Z2 x Z4 . 

20. Let G � ZI24Z and let G = G I ( 1 2  ) ,  where for each integer a we simplify notation by 
writing a as a. 
(a) Show that G = {o, T, . . . , fi } . 
(b) Find the order of each element of G. 
(c) Prove that G � ZI 12Z. (Thus (ZI24Z)/(12ZI24Z) � ZI1 2Z, just as if we inverted 

and cancelled the 24/f.'s.) 
21. Let G = z4 X z4 be given in terms of the following generators and relations: 

G = ( x ,  y I x4 = y4 = 1 , xy = yx ) . 

Sec. 3.1 Definitions a nd Examples 87 



Let G = G f ( x2y2 ) (note that every subgroup of the abelian group G is normal). 
(a) Show that the order of G is 8 .  
(b) Exhibit each element of G in the form X"yb,  for some integers a and b .  
(c) Find the order o f  each o f  the elements of G exhibited i n  (b). 
(d) Prove that G � z4 X Zz. 

22. (a) Prove that if H and K are normal subgroups of a group G then their intersection 
H n K is also a normal subgroup of G. 

(b) Prove that the intersection of an arbitrary nonempty collection of normal subgroups 
of a group is a normal subgroup (do not assume the collection is countable). 

23. Prove that the join ( cf. Section 2.5) of any nonempty collection of normal subgroups of a 
group is a normal subgroup. 

24. Prove that if N � G and H is any subgroup of G then N n H � H. 

25. (a) Prove that a subgroup N of  G is  normal if  and only if  gNg-1  c:; N for all g E G. 
(b) Let G = GLz (Q) , let N be the subgroup of upper triangular matrices with integer 

entries and I 's on the diagonal, and let g be the diagonal matrix with entries 2, 1 .  Show 
that g N g -! c:; N but g does not normalize N. 

26. Let a , b E G. 
(a) Prove that the conjugate of the product of a and b is the product of the conjugate of 

a and the conjugate of b. Prove that the order of a and the order of any conjugate of 
a are the same. 

(b) Prove that the conjugate of a-1 is the inverse of the conjugate of a. 
(c) Let N = ( S )  for some subset S of G. Prove that N � G if gSg - 1  c:; N for all g E G. 
(d) Deduce that if N is the cyclic group ( x ) , then N is normal in G if and only if for each 

g E G, gxg-1  = xk for some k E Z. 
(e) Let n be a positive integer. Prove that the subgroup N of G generated by all the 

elements of G of order n is a normal subgroup of G. 

27. Let N be a finite subgroup of a group G. Show that g N g -! c:; N if and only if g N g -! = N. 
Deduce that NG (N) = {g  E G I gNg-1 c:; N}. 

28. Let N be a finite subgroup of a group G and assume N = ( S )  for some subset S of G. 
Prove that an element g E G normalizes N if and only if gSg-1 c:; N. 

29. Let N be a finite subgroup of G and suppose G = ( T )  and N = ( S )  for some subsets S 
and T of G. Prove that N is normal in G if and only if t st- 1 c:; N for all t E T.  

30. Let N � G and let g E G. Prove that gN = N g if  and only if  g E NG (N) . 

31. Prove that if H � G and N is a normal subgroup of H then H � NG (N). Deduce that 
NG (N) is the largest subgroup of G in which N is normal (i.e., is the join of all subgroups 
H for which N � H). 

32. Prove that every subgroup of Qs is normal. For each subgroup find the isomorphism type 
of its corresponding quotient. [You may use the lattice of subgroups for Qs in Section 
2.5.] 

33. Find all normal subgroups of Ds and for each of these find the isomorphism type of its 
corresponding quotient. [You may use the lattice of subgroups for Ds in Section 2.5.] 

34. Let Dzn = ( r, s I rn = s2 = 1 , rs = sr- 1 ) be the usual presentation of the dihedral 
group of order 2n and let k be a positive integer dividing n.  
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(a) Prove that ( rk ) is a normal subgroup of Dzn . 
(b) Prove that Dzn / ( rk ) � Dzk -
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35. Prove that SLn (F) � GLn (F) and describe the isomorphism type of the quotient group 
(cf. Exercise 9.,Section 2. 1 ). 

36. Prove that if G/Z(G) is cyclic then G is abelian. [If G/Z(G) is cyclic with generator 
xZ(G), show that every element of G can be written in the form xaz for some integer 
a e Z and some element z e Z(G).] 

37. Let A and B be groups. Show that { (a,  1 )  I a e A} is a normal subgroup of A x B and the 
quotient of A x B by this subgroup is isomorphic to B. 

38. Let A be an abelian group and let D be the (diagonal) subgroup { (a ,  a) 1 a e A}  of A x  A. 
Prove that D is a normal subgroup of A x A and (A x A)/ D � A. 

39. Suppose A is the non-abelian group S3 and D is the diagonal subgroup 
{(a , a) I a e A} of A x  A. Prove that D is not normal in A x A. 

40. Let G be a group, let N be a normal subgroup of G and let G = G f N. Prove that x and 
y commute in G if and only if x-1 y-1xy e N. (The element x-1 y- 1xy is called the 
commutator of x and y and is denoted by [x , y ] .)  

41. Let G be a group. Prove that N = ( x-1 y-1 xy I x ,  y e G }  is a normal subgroup of G and 
G f N is abelian (N is called the commutator subgroup of G). 

42. Assume both H and K are normal subgroups of G with H n K = 1. Prove that xy = yx 
for all x e H and y e K. [Show x-1 y-1xy e H n K.] 

43. Assume P = {A; I i e I}  is any partition of G with the property that P is a group under 
the "quotient operation" defined as follows: to compute the product of A; with Aj take any 
element a; of A; and any element aj of Aj and let A; Aj be the element ofP containing a;aj 
(this operation is assumed to be well defined). Prove that the element of P that contains 
the identity of G is a normal subgroup of G and the elements of P are the cosets of this 
subgroup (so P is just a quotient group of G in the usual sense). 

3.2 MORE ON COSETS AND LAGRANGE•s THEOREM 

In this section we continue the study of quotient groups. Since for finite groups one 
of the most important invariants of a group is its order we first prove that the order of 

a quotient group of a finite group can be readily computed: I G/N I  = _!g_ In fact 
I N I  

we derive this as a consequence of a more general result, Lagrange's Theorem (see 
Exercise 19, Section 1 .7). This theorem is one of the most important combinatorial 
results in finite group theory and will be used repeatedly. After indicating some easy 
consequences of Lagrange 's Theorem we study more subtle questions concerning cosets 
of non-normal subgroups. 

The proof of Lagrange's Theorem is straightforward and important. It is the same 
line of reasoning we used in Example 3 of the preceding section to compute IDs/ Z (D8) 1 . 

Theorem 8. (Lagrange 's Theorem) If G is a finite group and H is a subgroup of G, 
then the order of H divides the order of G (i.e., I HI I I  G I )  and the number of left cosets 

. I G I 
of H m G equals 

I H I . 

Proof" Let I H I = n and let the number of left cosets of H in G equal k. By 
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Proposition 4 the set of left cosets of H in G partition G. By definition of a left coset 
the map: 

H -+  gH defined by h I--* gh 

is a surjection from H to the left coset g H .  The left cancellation law implies this map 
is injective since gh1 = gh2 implies ht  = h2.  This proves that H and gH have the 
same order: 

lgH I  = I H I = n .  
Since G i s  partitioned into k disjoint subsets each of  which has cardinality n, I G I  = kn . 

I G I  I G I . 
Thus k = - = - , completmg the proof. n I H I  

Definition. If G is a group (possibly infinite) and H � G ,  the number of left cosets 
of H in G is called the index of H in G and is denoted by I G : H 1 .  

In the case of finite groups the index of H in G i s  :�: . For G an infinite group 

the quotient 
I G I  

does not make sense. Infinite groups may have subgroups of finite 
I H I  

or infinite index (e.g., {0} is of infinite index in Z and ( n ) is of index n in Z for every 
n > 0). 

We now derive some easy consequences of Lagrange's Theorem. 

Corollary 9. If G is a finite group and x E G, then the order of x divides the order of 
G.  In particular x iG I = 1 for all x in G. 

Proof" By Proposition 2.2, lx I = I ( x ) I ·  The first part of the corollary follows from 
Lagrange's Theorem applied to H = ( x ) . The second statement is clear since now I G I  
is a multiple of the order of x .  

Corollary 10. If G is a group of prime order p ,  then G i s  cyclic, hence G � Zp . 

Proof: Let x E G, x f::. 1 .  Thus l ( x  ) I  > 1 and l ( x  ) I  divides I G I .  Since I G I  
i s  prime we must have I ( x ) I = I G 1 .  hence G = ( x ) i s  cyclic (with any nonidentity 
element x as generator). Theorem 2.4 completes the proof. 

With Lagrange's Theorem in hand we examine some additional examples of normal 
subgroups. 
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(1) Let H = ( ( 1  2 3) ) � S3 and let G = S3 . We show H � S3 . As noted in Section 2.2, 

H � Nc (H) � G. 

By Lagrange's Theorem, the order of H divides the order of Nc (H) and the order 
of Nc (H) divides the order of G. Since G has order 6 and H has order 3, the only 
possibilities for Nc (H) are H or G. A direct computation gives 

( 1  2)( 1 2 3) ( 1  2) = (1 3 2) = ( 1 2 3)-1 . 
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Since ( 1 2) = (1 2)-1 ,  this calculation shows that ( 1 2) conjugates a generator of H to 
another generator of H. By Exercise 24 of Section 2.3 this is sufficient to prove that 
( 1 2) E NG (H). Thus NG (H) ":f H so NG (H) = G, i.e., H � S3, as claimed. This 
argument illustrates that checking normality of a subgroup can often be reduced to a 
small number of calculations. A generalization of this example is given in the next 
example. 

(2) Let G be any group containing a subgroup H of index 2. We prove H � G. Let 
g E G - H so, by hypothesis, the two left cosets of H in G are l H  and gH. Since 
1 H = H and the cosets partition G, we must have gH = G - H. Now the two right 
cosets of H in G are H 1 and H g. Since H 1 = H, we again must have H g = G - H. 
Combining these gives g H = H g, so every left coset of H in G is a right coset. By 
Theorem 6, H � G. By definition of index, IG/H I = 2, so that G/H � Z2. One 
must be careful to appreciate that the reason H is normal in this case is not because we 
can choose the same coset representatives 1 and g for both the left and right cosets of 
H but that there is a type of pigeon-hole principle at work: since I H  = H = H I for 
any subgroup H of any group G, the index assumption forces the remaining elements 
to comprise the remaining coset (either left or right). We shall see that this result is 
itself a special case of a result we shall prove in the next chapter. 

Note that this result proves that ( i ) , ( j ) and ( k )  are normal subgroups of Qg 

and that ( s , r2 ), ( r ) and ( sr, r2 ) are normal subgroups of Dg. 
(3) The property "is a normal subgroup of' is not transitive. For example, 

( s ) � ( s, r2 ) � Ds 

(each subgroup is of index 2 in the next), however, ( s ) is not normal in Ds because 
rsr-1  = sr2 ¢ ( s  ) . 

We now examine some examples of non-normal subgroups . Although in abelian 
groups every subgroup is normal, this is not the case in non-abelian groups (in some 
sense Q8 is the unique exception to this). In fact, there are groups G in which the 
only normal subgroups are the trivial ones: 1 and G. Such groups are called simple 
groups (simple does not mean easy, however). Simple groups play an important role 
in the study of general groups and this role will be described in Section 4. For now 
we emphasize that not every subgroup of a group G is normal in G;  indeed, normal 
subgroups may be quite rare in G.  The search for normal subgroups of a given group 
is in general a highly nontrivial problem. 

Examples 

(1) Let H = ( ( 1 2) ) _:::: S3 . Since H is of prime index 3 in S3 , by Lagrange's Theorem 
the only possibilities for N s3 (H) are H or S3 . Direct computation shows 

( 1 3) ( 1 2) ( 1 3)-l = ( 1 3) ( 1  2) (1 3) = (2 3) ¢ H 

so N s3 (H) # S3, that is, H is not a normal subgroup of S3 . One can also see this by 
considering the left and right cosets of H; for instance 

(1 3)H = { ( 1 3) ,  (1 2 3)} and H(l  3) = { ( 1 3), ( 1 3 2)} .  
Since the left coset (1 3)H is the unique left coset of H containing ( 1 3), the right 
coset H(l  3) cannot be a left coset (see also Exercise 6). Note also that the "group 
operation" on the left cosets of H in S3 defined by multiplying representatives is not 
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even well defined. For example, consider the product of the two left cosets I H and ( 1 3) H. 
The elements 1 and (1 2) are both representatives for the coset 1 H ,  yet I · (1 3) = (1 3) 
and (1 2) · ( 1 3) = ( 1 3 2) are not both elements of the same left coset as they should be if 
the product of these cosets were independent of the particular representatives chosen. This 
is an example of Theorem 6 which states that the cosets of a subgroup form a group only 
when the subgroup is a normal subgroup. 
(2) Let G = Sn for some n E z+ and fix some i E { I ,  2, . . . , n} .  As in Section 2.2 let 

G; = {a E G I a (i)  = i }  

b e  the stabilizer of the point i .  Suppose r E G and r (i) = j .  It follows directly 
from the definition of G; that for all a E G; , ra(i) = j. Furthermore, if J.L E G and 
J.L(i) = j ,  then r -1 J.L(i) = i ,  that is, r -1 J.L E G; , so J.L E rG; .  This proves that 

rG; = {J.L E G I J.L(i) = j} ,  

i.e., the left coset rG; consists of the permutations in  Sn which take i to j .  We can 
clearly see that distinct left cosets have empty intersection and that the number of 
distinct left cosets equals the number of distinct images of the integer i under the 
action of G, namely there are n distinct left cosets. Thus I G  : Gi l = n. Using the 
same notation let k = r-1 (i), so that r (k) = i .  By similar reasoning we see that 

G; r = {). E G I ).(k) = i } , 

i .e., the right coset G; -r consists of the permutations in Sn which take k to i .  If n > 2, for 
some nonidentity element r we have r G; ::f. G; r since there are certainly permutations 
which take i to j but do not take k to i .  Thus G; is not a normal subgroup. In fact 
NG (G;) = G; by Exercise 30 of Section 1 ,  so G; is in some sense far from being 
normal in Sn . This example generalizes the preceding one. 

(3) In Ds the only subgroup of order 2 which is normal is the center { r2 ) . 

We shall see many more examples of non-normal subgroups as we develop the 
theory. 

The full converse to Lagrange 's Theorem is not true: namely, if G is a finite group 
and n divides I G I ,  then G need not have a subgroup of order n .  For example, let A be the 
group of symmetries of a regular tetrahedron. By Exercise 9 of Section 1 .2, IA I  = 12. 

Suppose A had a subgroup H of order 6. Since 
I A I  

= 2, H would be of index 2 in IH I  
A ,  hence H :g A and A/  H � Zz . Since the quotient group has order 2, the square of 
every element in the quotient is the identity, so for all g E A, (g H)2 = 1 H, that is, for 
all g E A, g2 E H. If g is an element of A of order 3, we obtain g = (g2)2 E H, that 
is, H must contain all elements of A of order 3. This is a contradiction since IH I  = 6 
but one can easily exhibit 8 rotations of a tetrahedron of order 3. 

There are some partial converses to Lagrange's Theorem. For finite abelian groups 
the full converse of Lagrange is true, namely an abelian group has a subgroup of order 
n for each divisor n of I G I  (in fact, this holds under weaker assumptions than "abelian"; 
we shall see this in Chapter 6). A partial converse which holds for arbitrary finite groups 
is the following result: 

92 Chap. 3 Quotient Groups and Homomorph isms 



Theorem 11. (Cauchy 's Theorem) If G is a finite group and p is a prime dividing I G I , 
then G has an element of order p. 

Proof" We shall give a proof of this in the next chapter and another elegant proof 
is outlined in Exercise 9. 

The strongest converse to Lagrange's Theorem which applies to arbitrary finite 
groups is the following: 

Theorem 12. (Sylow) If G is a finite group of order pam , where p is a prime and p 
does not divide m, then G has a subgroup of order pa . 

We shall prove this theorem in the next chapter and derive more information on the 
number of subgroups of order pa . 

We conclude this section with some useful results involving cosets. 

Definition. Let H and K be subgroups of a group and define 

H K = {hk I h E H, k E K}.  

Proposition 13. If H and K are finite subgroups of a group then 

I H K l  = 
I H I I K I 

. I H n K I 

Proof" Notice that H K is a union of left cosets of K, namely, 

Since each coset of K has I K I elements it suffices to find the number of distinct left 
cosets of the form hK , h E H .  But h 1 K = h2K for h 1 , h2 E H if and only if 

h21hl  E K. Thus 

h 1K = h2K {} h"21h1 E H n K {} h 1 (H n K) = h2 (H n K). 

Thus the number of distinct cosets of the form hK, for h E H is the number of distinct 
cosets h (H n K), for h E H .  The latter number, by Lagrange's Theorem, equals 

I H I  
. Thus H K consists of 

I H I  
distinct cosets of K (each of which has I K I 

I H n K I I H n K I 
elements) which gives the formula above. 

Notice that there was no assumption that H K be a subgroup in Proposition 13 .  
For example, if G = S3, H = ( ( 1 2) )  and K = ( (2 3) ) ,  then I H I = I K I  = 2 and 
I H  n K l  = 1 ,  so I H K l  = 4. By Lagrange's Theorem H K cannot be a subgroup. As a 
consequence, we must have S3 = ( ( 1 2) ,  (2 3) ) . 
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Proposition 14. If H and K are subgroups of a group, H K is a subgroup if and only 
if H K = K H. 

Proof: Assume first that H K = K H and let a ,  b E H K .  We prove ab- 1 E H K 
so H K is a subgroup by the subgroup criterion. Let 

and 

for some h 1 , h2 E H and k1 . k2 E K .  Thus b- 1 = k2 1 h2. 1 • so ab- 1 
= h ! k1 k2 1 h2. 1 . 

Let k3 = k1 ki 1 E K and h3 = h2.
1 . Thus ab- 1 = h 1 k3h3 . Since H K = K H, 

k3h3 = h4k4 , for some h4 E H, k4 E K. 

Thus ab-1 = h 1 h4k4, and since h 1 h4 E H, k4 E K , we obtain a b- 1 E H K , as desired. 
Conversely, assume that H K is a subgroup of G. Since K :S: H K and H :S: H K ,  

by the closure property of subgroups, K H � H K .  To show the reverse containment 
let hk E H K .  Since H K is assumed to be a subgroup, write hk = a- 1 , for some 
a E H K .  If a = h 1 k1 . then 

hk = (h ! kd - 1 = k} 1 h}1 E K H, 

completing the proof. 

Note that H K = K H does not imply that the elements of H commute with those 
of K (contrary to what the notation may suggest) but rather that every product hk is of 
the form k'h' (h need not be h' nor k be k') and conversely. For example, if G = D2n , 
H = ( r } and K = ( s } , then G = H K = K H so that H K is a subgroup and 
rs = sr-1 so the elements of H do not commute with the elements of K. This is an 
example of the following sufficient condition for H K to be a subgroup: 

Corollary 15. If H and K are subgroups of G and H :S: N c ( K),  then H K is a subgroup 
of G.  In particular, if K ::::) G then H K :S: G for any H :S: G. 

Proof: We prove H K = K H.  Let h E H, k E K .  By assumption, hkh-1 E K ,  
hence 

hk = (hkh -1 )h E K H. 

This proves H K � K H. Similarly, kh = h (h -1 kh) E H K , proving the reverse 
containment. The corollary follows now from the preceding proposition. 

Definition. If A is any subset of Nc ( K )  (or Cc (K)), we shall say A normalizes K 
(centralizes K, respectively). 

With this terminology, Corollary 15 states that H K is a subgroup if H normalizes 
K (similarly, H K is a subgroup if K normalizes H). 

In some instances one can prove that a finite group is a product of two of its 
subgroups by simply using the order formula in Proposition 13 .  For example, let 
G = S4, H = Ds and let K = ( ( 1 2 3) } ,  where we consider Ds as a subgroup of 
S4 by identifying each symmetry with its permutation on the 4 vertices of a square 
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(under some fixed labelling). By Lagrange's Theorem, H n K = 1 (see Exercise 8). 
Proposition 13 then shows I H K l  = 24 hence we must have H K = S4. Since H K is 
a group, H K = K H. We leave as an exercise the verification that neither H nor K 
normalizes the other (so Corollary 15 could not have been used to give H K = K H). 

Finally, throughout this chapter we have worked with left cosets of a subgroup. 
The same combinatorial results could equally well have been proved using right cosets. 
For normal subgroups this is trivial since left and right cosets are the same, but for non
normal subgroups some left cosets are not right cosets (for any choice of representative) 
so some (simple) verifications are necessary. For example, Lagrange's Theorem gives 
that in a finite group G 

the number of right cosets of the subgroup H is I G I 
. 

IH I 

Thus in a finite group the number of left cosets of H in G equals the number of right 
cosets even though the left cosets are not right cosets in general. This is also true for 
infinite groups as Exercise 12 below shows. Thus for purely combinatorial purposes 
one may use either left or right cosets (but not a mixture when a partition of G is 
needed). Our consistent use of left cosets is somewhat arbitrary although it will have 
some benefits when we discuss actions on cosets in the next chapter. Readers may 
encounter in some works the notation H \ G to denote the set of right cosets of H in G. 

In some papers one may also see the notation G f H used to denote the set of left 
cosets of H in G even when H is not normal in G (in which case G j H is called the 
coset space of left cosets of H in G). We shall not use this notation. 

E X E R C I S E S  

Let G be a group. 

1. Which of the following are permissible orders for subgroups of a group of order 1 20: 1 ,  
2, 5, 7, 9, 15, 60, 240? For each permissible order give the corresponding index. 

2. Prove that the lattice of subgroups of S3 in Section 2.5 is correct (i.e., prove that it contains 
all subgroups of S3 and that their pairwise joins and intersections are correctly drawn). 

3. Prove that the lattice of subgroups of Qs in Section 2.5 is correct. 

4. Show that if I G I  = pq for some primes p and q (not necessarily distinct) then either G is 
abelian or Z(G) = 1 .  [See Exercise 36 in Section 1 .] 

5. Let H be a subgroup of G and fix some element g E G. 
(a) Prove that gHg-1 is a subgroup of G of the same order as H. 
(b) Deduce that if n E z+ and H is the unique subgroup of G of order n then H ':S) G. 

6. Let H � G and let g E G. Prove that if the right coset H g equals some left coset of H in 
G then it equals the left coset gH and g must be in NG (H) . 

7. Let H � G and define a relation '""' on G by a '""' b if and only if b-1 a E H. Prove 
that '""' is an equivalence relation and describe the equivalence class of each a E G. Use 
this to prove Proposition 4. 

8. Prove that if H and K are finite subgroups of G whose orders are relatively prime then 
H n K = l . 
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9. This exercise outlines a proof of Cauchy's  Theorem due to James McKay (Another proof 
of Cauchy 's group theorem, Amer. Math. Monthly, 66(1959), p. 1 19). Let G be a finite 
group and let p be a prime dividing I G I .  Let S denote the set of p-tuples of elements of 
G the product of whose coordinates is 1 : 

S = { (x1 , x2 , . . . , Xp) I x; E G and XJX2 · · · Xp = 1 } .  

(a) Show that S has IG ip- l elements, hence has order divisible by  p. 

Define the relation � on S by letting a � f3 if f3 is a cyclic permutation of a. 
(b) Show that a cyclic permutation of an element of S is again an element of S. 
(c) Prove that � is an equivalence relation on S. 
(d) Prove that an equivalence class contains a single element if and only if it is of the 

form (x, x , . . .  , x) with xP = 1 . 
(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime). 

Deduce that IG ip-l = k + pd, where k is the number of classes of size 1 and d is the 
number of classes of size p. 

(f) Since { ( 1 , 1, . . .  , 1)} is an equivalence class of size 1 ,  conclude from (e) that there 
must be a nonidentity element x in G with xP = 1 ,  i.e., G contains an element of 
order p. [Show p I k and so k > 1.] 

10. Suppose H and K are subgroups of finite index in the (possibly infinite) group G with 
IG : H I  = m and IG : K l  = n. Prove that Lc.m. (m , n) ::: I G  : H n Kl  ::: mn. Deduce 
that if m and n are relatively prime then I G : H n K l  = I G : H I ·  I G : K l .  

11. Let H ::: K ::: G. Prove that I G : H I  = IG : K l · I K :  H I  ( do  not assume G i s  finite). 

12. Let H ::: G. Prove that the map x r+ x-1 sends each left coset of H in G onto a right 
coset of H and gives a bijection between the set of left cosets and the set of right cosets of 
H in G (hence the number of left cosets of H in G equals the number of right cosets). 

13. Fix any labelling of the vertices of a square and use this to identify Ds as a subgroup of 
S4. Prove that the elements of Ds and { ( 1 2 3) ) do not commute in S4 . 

14. Prove that S4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.  

15. Let G = S
n and for fixed i E { 1 . 2, . . .  , n } let G; be the stabilizer ofi .  Prove that G; � Sn-1 · 

16. Use Lagrange's Theorem in the multiplicative group (7!./pZ) x to prove Fermat's Little 
Theorem: if p is a prime then aP = a(mod p) for all a E 7!.. 

17. Let p be a prime and let n be a positive integer. Find the order of p in (7!./(pn - 1 )7/.)x and 
deduce that n I q;(pn - 1) (here q; is Euler's function). 

18. Let G be a finite group, let H be a subgroup of G and let N :.:::1 G. Prove that if I H I  and 
I G : Nl are relatively prime then H ::: N. 

19. Prove that if N is a normal subgroup of the finite group G and ( IN I ,  I G : Nl)  = 1 then N 
is the unique subgroup of G of order I N I . 

20. If A is an abelian group with A :.:::1 G and B is any subgroup of G prove that A n  B :.:::1 AB. 
21. Prove that Q has no proper subgroups of finite index. Deduce that Q/7!. has no proper 

subgroups of finite index. [Recall Exercise 21 ,  Section 1 .6 and Exercise 15, Section 1 .] 

22. Use Lagrange's Theorem in the multiplicative group (7!./nZ) x to prove Euler's Theorem: 
a"'<n> = 1 mod n for every integer a relatively prime to n, where <p denotes Euler's q;
function. 

23. Determine the last two digits of 33uXJ . [Determine 3 100 mod q; (100) and use the previous 
exercise.] 
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3.3 THE ISOMORPH ISM TH EOREMS 

In this section we derive some straightforward consequences of the relations between 
quotient groups and homomorphisms which were discussed in Section 1 .  In particular 
we consider the relation between the lattice of subgroups of a quotient group, GIN , 
and the lattice of subgroups of the group G. The first result restates our observations in 
Section 1 on the relation of the image of a homomorphism to the quotient by the kernel 
(sometimes called the Fundamental Theorem of Homomorphisms): 

Theorem 16. (The First Isomorphism Theorem) If q; : G � H is a homomorphism of 
groups, then ker q; � G and Gj ker q;  � q;(G). 

Corollary 17. Let q; : G � H be a homomorphism of groups. 
(1) q; is injective if and only if ker q; = 1 .  
(2) I G : ker q; l  = iq; (G) I .  

Proof" Exercise. 

When we consider abstract vector spaces we shall see that Corollary 17(2) gives 
a formula possibly already familiar from the theory of linear transformations: if 
q; : V � W is a linear transformation of vector spaces, then dim V = rank q; +nullity q; .  

Theorem 18. (The Second or Diamond Isomorphism Theorem) Let G be a group, let 
A and B be subgroups of G and assume A :::: NG (B). Then AB is a subgroup of G,  
B � AB, A n  B � A  and ABjB � A/A n B .  

Proof" B y  Corollary 1 5 ,  AB is a subgroup of G.  Since A ::'S NG(B) by assumption 
and B :::: NG(B) trivially, it follows that AB :::: NG (B), i .e., B is a normal subgroup of 
the subgroup AB. 

Since B i s  normal in  A B,  the quotient group A BIB i s  well defined. Define the map 
q; : A � A B / B by q;(a) = a B .  Since the group operation in A B / B is well defined it 
is easy to see that q; is a homomorphism: 

q;(a1a2) = (a1a2)B = a1B · a2B = q; (a1 )q;(a2) . 

Alternatively, the map q; is just the restriction to the subgroup A of the natural projection 
homomorphism rr : A B � A B / B, so is also a homomorphism. It is clear from the 
definition of AB that q; is smjective. The identity in AB / B is the coset 1 8 ,  so the kernel 
of q; consists of the elements a E A with aB = 1 B, which by Proposition 4 are the 
elements a E B, i.e., ker q; = A n B .  By the First Isomorphism Theorem, A n B � A 
and A I A n B � A BIB, completing the proof. 

Note that this gives a new proof of the order formula in Proposition 13  in the special 
case that A :::: NG (B) .  The reason this theorem is called the Diamond Isomorphism is 
because of the portion of the lattice of subgroups of G involved (see Figure 6). The 
markings in the lattice lines indicate which quotients are isomorphic. The "quotient" 
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AB I A need not be a group (i.e., A need not be normal in AB), however we still have 
lAB : A I = IB  : A n  B l . 

G 
I 

AB 

/ ""'  
A B 

""' /  
A n B  

I 
1 

Fig. 6 

The third Isomorphism Theorem considers the question of taking quotient groups 
of quotient groups. 

Theorem 19. (The Third Isomorphism Theorem) Let G be a group and let H and K be 
normal subgroups of G with H :;: K .  Then K I H � G I H and 

(GIH)I(KIH) � GIK. 
If we denote the quotient by H with a bar, this can be written 

GIK � GIK. 

Proof" We leave as an easy exercise the verification that K I H � G I H.  Define 

q; :  GIH --+ GIK 
(gH) �--+ gK. 

To show q; is well defined suppose g1 H = g2H. Then g1 = g2h ,  for some h E H. 
Because H :;: K, the element h is also an element of K, hence g1 K = g2K i.e., 
q;(g1 H) = q;(g2H), which shows q; is well defined. Since g may be chosen arbitrarily 
in G, q; is a surjective homomorphism. Finally, 

ker q; = {gH E GIH I q;(gH) = lK )  
= {gH E GIH I gK = l K} 
= {gH E GIH I g E K} = KIH. 

By the First Isomorphism Theorem, (GI H)I(KI H) � Gl K. 

An easy aid for remembering the Third Isomorphism Theorem is: "invert and 
cancel" (as one would for fractions). This theorem shows that we gain no new structural 
information from taking quotients of a quotient group. 

The final isomorphism theorem describes the relation between the lattice of sub
groups of the quotient group GIN and the lattice of subgroups of G. The lattice for 
GIN can be read immediately from the lattice for G by collapsing the group N to the 
identity. More precisely, there is a one-to-one correspondence between the subgroups 
of G containing N and the subgroups of GIN, so that the lattice for GIN (or rather, 
an isomorphic copy) appears in the lattice for G as the collection of subgroups of G 
between N and G. In particular, the lattice for GIN appears at the "top" of the lattice 
for G, a result we mentioned at the beginning of the chapter. 
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Theorem 20. (The Fourth or Lattice Isomorphism Theorem) Let G be a group and let 
N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of 
G which contain N onto the set of subgroups A = A IN of GIN. In particular, every 

subgroup of G is of the form AIN for some subgroup A of G containing N (namely, 
its preimage in G under the natural projection homomorphism from G to GIN). This 
bijection has the following properties: for all A,  B :S G with N :s A  and N :S B, 

(1) A :S B if and only if A :S B, 
(2) if A :s B, then I B : AI = IB : A I ,  
(3) ( A , B ) = ( A, B ) , 
(4) A n B = A n B, and 
(5) A � G if and only if A � G. 

Proof: The complete preimage of a subgroup in GIN is a subgroup of G by 
Exercise 1 of Section 1 .  The numerous details of the theorem to check are all completely 
straightforward. We therefore leave the proof of this theorem to the exercises. 

Examples 

(1) Let G = Qs and let N be the normal subgroup ( - 1 ) . The (isomorphic copy of the) 
lattice of G 1 N consists of the double lines in the lattice of G below. Note that we 
previously proved that Qs/( - 1 ) � v4 and the two lattices do indeed coincide (see 
Section 2.5 for the lattices of Qg and V4). 

Qg 

/ II ' 
( i )  ( j )  ( k )  

' II /  
( - 1 ) 

I 

(2) The same process gives us the lattice of Ds/( r2 ) (the double lines) in the lattice of 
Ds: 

Note that in the second example above there are subgroups of G which do not 
directly correspond to subgroups in the quotient group GIN, namely the subgroups 
of G which do not contain the normal subgroup N. This is because the subgroup 
N projects to a point in GIN and so several subgroups of G can project to the same 
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subgroup in the quotient. The image of the subgroup H of G under the natural projection 
homomorphism from G to GIN is the same as the image of the subgroup H N of G, 
and the subgroup H N of G contains N. Conversely, the preimage of a subgroup H of 
GIN contains N and is the unique subgroup of G containing N whose image in GIN 
is H. It is the subgroups of G containing N which appear explicitly in the lattice for 
GIN. 

The two lattices of groups of order 8 above emphasize the fact that the isomorphism 
type of a group cannot in general be determined from the knowledge of the isomorphism 
types of GIN and N, since Q81 ( - 1  ) � D81 ( r2 ) and ( - 1  ) � ( r2 ) yet Q8 and D8 
are not isomorphic. We shall discuss this question further in the next section. 

We shall often indicate the index of one subgroup in another in the lattice of sub
groups, as follows: 

A 

I n 
B 

where the integer n equals lA : B l .  For example, all the unbroken edges in the lattices 
of Qs and D8 would be labelled with 2. Thus the order of any subgroup, A, is the 
product of all integers which label any path upward from the identity to A. Also, by 
Theorem 20(2) these indices remain unchanged in quotients of G by normal subgroups 
of G contained in B, i.e., the portion of the lattice for G corresponding to the lattice of 
the quotient group has the correct indices for the quotient as well. 

Finally we include a remark concerning the definition of homomorphisms on quo
tient groups. We have, in the course of the proof of the isomorphism theorems, encoun
tered situations where a homomorphism <p on the quotient group GIN is specified by 
giving the value of <p on the coset g N in terms of the representative g alone. In each 
instance we then had to prove <p was well defined, i.e., was independent of the choice 
of g. In effect we are defining a homomorphism, <P ,  on G itself by specifying the value 
of <p at g. Then independence of g is equivalent to requiring that <P be trivial on N, so 
that 

<p is well defined on GIN if and only if N :::: ker <P.  

This gives a simple criterion for defining homomorphisms on quotients (namely, define 
a homomorphism on G and check that N is contained in its kernel). In this situation we 
shall say the homomorphism <P factors through N and <p is the induced homomorphism 
on GIN. This can be denoted pictorially as in Figure 7, where the diagram indicates 
that <P = <p o n, i.e. , the image in H of an element in G does not depend on which path 
one takes in the diagram. If this is the case, then the diagram is said to commute. 

1T G GjN �l� 
Fig. 7 

At this point we have developed all the background material so that Section 6.3 on 
free groups and presentations may now be read. 
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E X E R C I S E S 

Let G be a group. 

l. Let F be a finite field of order q and let n E z+ 0 Prove that I G Ln (F) : s Ln (F) I = q - 1 .  
[See Exercise 35, Section 1 .] 

2. Prove all parts of the Lattice Isomorphism Theorem. 

3. Prove that if H is a normal subgroup of G of prime index p then for all K -:; G either 
(i) K -:; H or 

(ii) G = HK and I K : K n HI = p. 

4. Let C be a normal subgroup of the group A and let D be a normal subgroup of the group 
B .  Prove that (C x D) �  (A x B) and (A x B)j(C x D) � (A/C) x (B/D). 

5. Let QD16 = ( a, r }  be the quasidihedral group described in Exercise 1 1  of Section 2.5 . 

Prove that ( a4 } is normal in QDt6 and use the Lattice Isomorphism Theorem to draw the 
lattice of subgroups of Q Dt6 1 ( a4 } . Which group of order 8 has the same lattice as this 
quotient? Use generators and relations for QDt6/(  a4 } to decide the isomorphism type 
of this group. 

6. Let M = ( v, u }  be the modular group of order 16 described in Exercise 14 of Section 
2.5 . Prove that ( v4 } is normal in M and use the Lattice Isomorphism Theorem to draw 
the lattice of subgroups of M I ( v4 } . Which group of order 8 has the same lattice as this 
quotient? Use generators and relations for M 1 ( v4 } to decide the isomorphism type of this 
group. 

7. Let M and N be normal subgroups of G such that G = M N. Prove that 
Gj(M n N) � (G/M) X (G/N). [Draw the lattice.] 

8. Let p be a prime and let G be the group of p-power roots of 1 in C (cf. Exercise 18,  
Section 2.4). Prove that the map z �--+ zP is a surjective homomorphism. Deduce that G 
is isomorphic to a proper quotient of itself. 

9. Let p be a prime and let G be a group of order pam, where p does not divide m.  Assume 
P is a subgroup of G of order pa and N is a normal subgroup of G of order pbn, where 
p does not divide n.  Prove that I P n N l  = ph and 1 P N IN I = pa -b . (The subgroup P 
of G is called a Sylow p-subgroup of G. This exercise shows that the intersection of any 
Sylow p-subgroup of G with a normal subgroup N is a Sylow p-subgroup of N .) 

10. Generalize the preceding exercise as follows. A subgroup H of a finite group G is called 
a Hall subgroup of G if its index in G is relatively prime to its order: ( IG  : H I ,  I H I) = 1 .  
Prove that if H i s  a Hall subgroup of G and N � G ,  then H n N i s  a Hall subgroup of N 
and HN jN is a Hall subgroup of GjN. 

3.4 COMPOSITION SERIES AN D THE HOLDER PROGRAM 

The remarks in the preceding section on lattices leave us with the intuitive picture that 
a quotient group G / N is the group whose structure (e.g . , lattice) describes the structure 
of G "above" the normal subgroup N. Although this is somewhat vague, it gives at least 
some notion of the driving force behind one of the most powerful techniques in finite 
group theory (and even some branches of infinite group theory): the use of induction. In 
many instances the application of an inductive procedure follows a pattern similar to the 
following proof of a special case of Cauchy's Theorem. Although Cauchy's Theorem is 
valid for arbitrary groups ( cf. Exercise 9 of Section 2), the following is a good example 
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of the use of information on a normal subgroup N and on the quotient GIN to determine 
information about G,  and we shall need this particular result in Chapter 4. 

Proposition 21. If G is a finite abelian group and p is a prime dividing I G I, then G 
contains an element of order p.  

Proof· The proof proceeds by induction on I G I ,  namely, we assume the result 
is valid for every group whose order is strictly smaller than the order of G and then 
prove the result valid for G (this is sometimes referred to as complete induction). Since 
I G I  > 1 , there is an element x E G with x "I 1 .  If IG I = p then x has order p by 
Lagrange's Theorem and we are done. We may therefore assume I G I  > p. 

Suppose p divides lx I and write lx I = pn. By Proposition 2.5(3), lxn I = p, and 
again we have an element of order p. We may therefore assume p does not divide lx l . 

Let N = ( x ) . Since G is abelian, N � G. By Lagrange's Theorem, I GIN I = : �: 
and since N -::j:. l , I GIN I < I G I .  Since p does not divide i N I , we must have p I I GINI .  
We can now apply the induction assumption to the smaller group GIN to conclude it 
contains an element, y = yN, of order p. Since y ¢ N (y -=I l) but yP E N  (yP = l), 
we must have ( yP )  -=I ( y ) , that is, lyP I < I Y I ·  Proposition 2.5(2) implies p I I Y I ·  We 
are now in the situation described in the preceding paragraph, so that argument again 
produces an element of order p. The induction is complete. 

The philosophy behind this method of proof is that if we have a sufficient amount of 
information about some normal subgroup, N,  of a group G and sufficient information 
on GIN, then somehow we can piece this information together to force G itself to have 
some desired property. The induction comes into play because both N and G 1 N have 
smaller order than G.  In general, just how much data are required is a delicate matter 
since, as we have already seen, the full isomorphism type of G cannot be determined 
from the isomorphism types of N and GIN alone. 

Clearly a basic obstruction to this approach is the necessity of producing a normal 
subgroup, N, of G with N -=f. 1 or G. In the preceding argument this was easy since 
G was abelian. Groups with no nontrivial proper normal subgroups are fundamental 
obstructions to this method of proof. 

Definition. A (finite or infinite) group G is called simple if IG I  > 1 and the only 
normal subgroups of G are 1 and G.  

By Lagrange's Theorem if  I G I i s  a prime, its only subgroups (let alone normal ones) 
are 1 and G, so G is simple. In fact, every abelian simple group is isomorphic to Zp, 
for some prime p ( cf. Exercise 1 ). There are non-abelian simple groups (of both finite 
and infinite order), the smallest of which has order 60 (we shall introduce this group as 
a member of an infinite family of simple groups in the next section). 

Simple groups, by definition, cannot be "factored" into pieces like N and GIN and 
as a result they play a role analogous to that of the primes in the arithmetic of Z. This 
analogy is supported by a "unique factorization theorem" (for finite groups) which we 
now describe. 
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Definition. In a group G a sequence of subgroups 

1 = No :::: N1 :::: Nz :::: · · · :::: Nk-l :::: Nk = G 
is called a composition series if N; � N;+l and N;+ll N; a simple group, 0 ::=:: i ::=:: k - 1 .  
If the above sequence is a composition series, the quotient groups N; +l f N; are called 
composition factors of G. 

Keep in mind that it  is not assumed that each N; � G, only that N; � N;+l · Thus 

1 � ( s } � ( s ,  r2 } � Ds and 1 � ( r2 } � ( r } � Ds 

are two composition series for D8 and in each series there are 3 composition factors, 
each of which is isomorphic to (the simple group) Z2. 

Theorem 22. (Jordan-Holder) Let G be a finite group with G =P 1 . Then 
(1) G has a composition series and 
(2) The composition factors in a composition series are unique, namely, if 

1 = No :::: N1 :::: · · · :::: Nr = G and 1 = Mo :::: M1 :::: · · · :::: Ms = G are 
two composition series for G, then r = s and there is some permutation, rr ,  of 
{ 1 , 2, . . .  , r} such that 

1 ::=:: i ::=:: r. 

Proof" This is fairly straightforward. Since we shall not explicitly use this theorem 
to prove others in the text we outline the proof in a series of exercises at the end of this 
section. 

Thus every finite group has a "factorization" (i.e., composition series) and although 
the series itself need not be unique (as D8 shows) the number of composition factors and 
their isomorphism types are uniquely determined. Furthermore, nonisomorphic groups 
may have the same (up to isomorphism) list of composition factors (see Exercise 2). 
This motivates a two-part program for classifying all finite groups up to isomorphism: 

The Holder Program 

(1) Classify all finite simple groups. 
(2) Find all ways of ''putting simple groups together" to form other groups. 

These two problems form part of an underlying motivation for much of the development 
of group theory. Analogues of these problems may also be found as recurring themes 
throughout mathematics. We include a few more comments on the current status of 
progress on these problems. 

The classification of finite simple groups (part ( 1 ) of the Holder Program) was 
completed in 1980, about 100 years after the formulation of the HOlder Program. Efforts 
by over 100 mathematicians covering between 5,000 and 10,000 journal pages (spread 
over some 300 to 500 individual papers) have resulted in the proof of the following 
result: 
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Theorem. There is a list consisting of 1 8  (infinite) families of simple groups and 26 
simple groups not belonging to these families (the sporadic simple groups) such that 
every finite simple group is isomorphic to one of the groups in this list. 

One example of a family of simple groups is {Zp I p a prime}. A second infinite 
family in the list of finite simple groups is: 

{SLn (.IF)fZ(SLn (lF)) I n  E z,+ ,  n 2: 2 and IF a finite field } .  

These groups are all simple except for SLz(IFz) and SLz (IF3) where IF2 is the finite field 
with 2 elements and IF3 is the finite field with 3 elements. This is a 2-parameter family 
(n and IF being independent parameters). We shall not prove these groups are simple 
(although it is not technically beyond the scope of the text) but rather refer the reader to 
the book Finite Group Theory (by M. Aschbacher, Cambridge University Press, 1986) 
for proofs and an extensive discussion of the simple group problem. A third family of 
finite simple groups, the alternating groups, is discussed in the next section; we shall 
prove these groups are simple in the next chapter. 

To gain some idea of the complexity of the classification of finite simple groups the 
reader may wish to peruse the proof of one of the cornerstones of the entire classification: 

Theorem. (Feit-Thompson) If G is a simple group of odd order. then G � Z P for some 
prime p. 

This proof takes 255 pages of hard mathematics. 2 

Part (2) of the HOlder Program, sometimes called the extension problem, was rather 
vaguely formulated. A more precise description of "putting two groups together" is: 
given groups A and B, describe how to obtain all groups G containing a normal subgroup 
N such that N � B and GfN � A . For instance, if A =  B = Zz, there are precisely 
two possibilities for G, namely, Z4 and V4 (see Exercise 10  of Section 2.5) and the 
Holder program seeks to describe how the two groups of order 4 could have been built 
from two Z2 's without a priori knowledge of the existence of the groups of order 4. This 
part of the HOlder Program is extremely difficult, even when the subgroups involved 
are of small order. For example, all composition factors of a group G have order 2 
if and only if I G I = 2" , for some n (one implication is easy and we shall prove both 
implications in Chapter 6). It is known, however, that the number of nonisomorphic 
groups of order 2" grows (exponentially) as a function of 2" , so the number of ways 
of putting groups of 2-power order together is not bounded. Nonetheless, there are a 
wealth of interesting and powerful techniques in this subtle area which serve to unravel 
the structure of large classes of groups. We shall discuss only a couple of ways of 
building larger groups from smaller ones (in the sense above) but even from this limited 
excursion into the area of group extensions we shall construct numerous new examples 
of groups and prove some classification theorems. 

One class of groups which figures prominently in the theory of polynomial equations 
is the class of solvable groups: 

2 Solvability of groups of odd order, Pacific Journal of Mathematics, 13(  1963), pp. 775-1029. 
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Definition. A group G is solvable if there is a chain of subgroups 

1 = Go � Gt � G2 � . . .  � Gs = G 

such that G;+t f G; is abelian for i = 0, 1 ,  . . . , s - 1 .  

The terminology comes from the correspondence in Galois Theory between these 
groups and polynomials which can be solved by radicals (which essentially means there 
is an algebraic formula for the roots). Exercise 8 shows that finite solvable groups are 
precisely those groups whose composition factors are all of prime order. 

One remarkable property of finite solvable groups is the following generalization 
of Sylow's Theorem due to Philip Hall (cf. Theorem 6. 1 1  and Theorem 19 .8). 

Theorem. The finite group G is solvable if and only if for every divisor n of I G I  such 
I G I 

that (n, - ) = 1 ,  G has a subgroup of order n. n 

As another illustration of how properties of a group G can be deduced from com
bined information from a normal subgroup N and the quotient group GIN we prove 

if N and GIN are solvable, then G is solvable. 

To see this let G = GIN, let l = No � Nt � . . . � Nn = N be a chain of subgroups 
of N such that Ni+tl N; is abelian, 0 .:::: i < n and let I = Go � Gt � . . .  � Gm = G 
be a chain of subgroups of G such that Gi+t iG; is abelian, 0 .:::: i < m. By the Lattice 
Isomorphism Theorem there are subgroups G; of G with N .:::: G; such that G; IN = G; 
and G; � G;+I , 0 .:::: i < m. By the Third Isomorphism Theorem 

Thus 
1 = No � Nt � . . . � Nn = N = Go � Gt � . . . � Gm = G 

is a chain of subgroups of G all of whose successive quotient groups are abelian. This 
proves G is solvable. 

It is inaccurate to say that finite group theory is concerned only with the HOlder 
Program. It is accurate to say that the Holder Program suggests a large number of 
problems and motivates a number of algebraic techniques. For example, in the study 
of the extension problem where we are given groups A and B and wish to find G and 
N � G with N � B and GIN � A, we shall see that (under certain conditions) we 
are led to an action of the group A on the set B . Such actions form the crux of the next 
chapter (and will result in information both about simple and non-simple groups) and 
this notion is a powerful one in mathematics not restricted to the theory of groups. 

The final section of this chapter introduces another family of groups and although in 
line with our interest in simple groups, it will be of independent importance throughout 
the text, particularly in our study later of determinants and the solvability of polynomial 
equations. 
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E X E R C I S E S  

1. Prove that if G is an abelian simple group then G � Zp for some prime p (do not assume 
G is a finite group). 

2. Exhibit all 3 composition series for Qs and all 7 composition series for D8. List the 
composition factors in each case. 

3. Find a composition series for the quasidihedral group of order 16 (cf. Exercise 1 1 , Section 
2.5). Deduce that QD16 is solvable. 

4. Use Cauchy's Theorem and induction to show that a finite abelian group has a subgroup 
of order n for each positive divisor n of its order. 

5. Prove that subgroups and quotient groups of a solvable group are solvable. 

6. Prove part ( 1 )  of the Jordan-HOlder Theorem by induction on I G 1 .  

7. If G i s  a finite group and H :::;1 G prove that there i s  a composition series of G ,  one of 
whose terms is H. 

8.  Let G be a finite group. Prove that the following are equivalent: 
(i) G is solvable 

(ii) G has a chain of subgroups: 1 = Ho :::;1 Ht :::;1 Hz :::;1 . . . :::;1 Hs = G such that Hi+ 1 I Hi 
is cyclic, 0 :S i :s s - 1 

(iii) all composition factors of G are of prime order 
(iv) G has a chain of subgroups: 1 = No :::;1 Nt :::;1 Nz :::;1 • • •  :::;1 N, = G such that each M 

is a normal subgroup of G and Ni+ 1 I M is abelian, 0 :s i :s t - 1 .  

[For (iv), prove that a minimal nontrivial normal subgroup M of G i s  necessarily abelian 
and then use induction. To see that M is abelian, let N :::;1 M be of prime index (by (iii)) and 
show that x- 1y- 1xy E N  for all x ,  y E M  (cf. Exercise 40, Section 1 ) .  Apply the same 
argument to gNg- 1 to show that x-ly-1 xy lies in the intersection of all G-conjugates of 
N, and use the rninimality of M to conclude that x-I y -I xy = 1 .] 

9. Prove the following special case of part (2) of the Jordan-HOlder Theorem: assume the 
finite group G has two composition series 

1 = No :::;1 Nt :::;1 . . .  :::;1 Nr = G and 1 = Mo :::;1 Mt :::;1 Mz = G. 

Show that r = 2 and that the list of composition factors is the same. [Use the Second 
Isomorphism Theorem.] 

10. Prove part (2) of the Jordan-HOlder Theorem by induction on rnin{r, s} .  [Apply the 
inductive hypothesis to H = Nr- 1  n Ms-1 and use the preceding exercises.] 

11. Prove that if H is a nontrivial normal subgroup of the solvable group G then there is a 
nontrivial subgroup A of H with A :::;1 G and A abelian. 

12. Prove (without using the Feit-Thompson Theorem) that the following are equivalent: 
(i) every group of odd order is solvable 

(ii) the only simple groups of odd order are those of prime order. 

3.5 TRANSPOSITIONS AN D TH E ALTERNATING GROUP 

Transpositions and Generation of Sn 
As we saw in Section 1 .3 (and will prove in the next chapter) every element of Sn can 
be written as a product of disjoint cycles in an essentially unique fashion. In contrast, 
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every element of S, can be written in many different ways as a (nondisjoint) product of 
cycles. For example, even in S3 the element a = ( 1  2 3) may be written 

a = ( 1  2 3) = ( 1 3) (1 2) = (1 2) ( 1 3) ( 1 2) ( 1 3) = ( 1 2) (2 3) 

and, in fact, there are an infinite number of different ways to write a .  Not requiring the 
cycles to be disjoint totally destroys the uniqueness of a representation of a permutation 
as a product of cycles. We can, however, obtain a sort of "parity check" from writing 
permutations (nonuniquely) as products of 2-cycles. 

Definition. A 2-cycle is called a transposition. 

Intuitively, every permutation of { 1 , 2, . . .  , n} can be realized by a succession of 
transpositions or simple interchanges of pairs of elements (try this on a small deck of 
cards sometime !). We illustrate how this may be done. First observe that 

(at a2 . . . am ) = (at am) (at am-t ) (at am-2) . . .  (at a2) 
for any m-cycle. Now any permutation in S, may be written as a product of cycles (for 
instance, its cycle decomposition). Writing each of these cycles in turn as a product of 
transpositions by the above procedure we see that 

every element of S, may be written as a product of transpositions 
or, equivalently, 

S, = { T )  where T = {(i j) I 1 ::::: i < j ::::: n} .  
For example, the permutation a in  Section 1 .3 may be  written 

a = ( 1 1 2 8 1 0 4) (2 13) (5 1 1  7) (6 9) 
= ( 1 4) ( 1 10) ( 1  8) ( 1 12) (2 13)(5 7)(5 1 1 ) (6 9) . 

The Alternating Group 

Again we emphasize that for any a E S, there may be many ways of writing a as a 
product of transpositions. For fixed a we now show that the parity (i.e., an odd or even 
number of terms) is the same for any product of transpositions equaling a .  

Let Xt , . • .  , x, be independent variables and let tl be the polynomial 

11 = n (X; - Xj ) ,  
t::;i<j:Sn 

i.e., the product of all the terms x; - Xj for i < j .  For example, when n = 4, 

11 = (Xt - X2) (Xt - XJ) (Xt - X4) (x2 - X3) (x2 - X4) (X3 - X4) . 
For each a E S, let a act on 11 by permuting the variables in the same way it permutes 
their indices: 

a (11) = n (Xa (i )  - Xa (j) ) . 
t::;i <j :Sn 
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For example, if n = 4 and a = ( 1  2 3 4) then 

a (Do) = (X2 - X3) (X2 - X4) (X2 - Xt) (X3 - X4) (X3 - Xt ) (X4 - Xt) 

(we have written the factors in the same order as above and applied a to each factor to 
get a (D.)). Note (in general) that D. contains one factor x; - x1 for all i < j ,  and since 
a is a bijection of the indices, a (D.) must contain either x; - xi or x1 - x; , but not both 
(and certainly no x; - x; terms), for all i < j .  If a (D.) has a factor x1 - x; where j > i ,  
write this term as - (x; - x1) .  Collecting all the changes in  sign together we  see that D. 
and a (D.) have the same factors up to a product of - 1 's, i.e., 

a (D.) = ± D. ,  for all a E Sn . 

For each a E Sn let { + 1 ,  
E (a)  = - 1 , 

if a (D.) = D. 

if (j (D.) = - D.  . 

In the example above with n = 4 and a = (1 2 3 4) , there are exactly 3 factors of the 
form x1 - x; where j > i in a (D.), each of which contributes a factor of - 1 .  Hence 

( 1 2 3 4)(D.) = (- 1)\D.) = - D. ,  

so 
E((1 2 3 4)) = - 1 .  

Definition. 
(1) E (a) is called the sign of a .  
(2) a is called an evenpennutation ifE(a) = 1 and an oddpennutation ifE (a) = - 1 

The next result shows that the sign of a permutation defines a homomorphism. 

Proposition 23. The map E : Sn -+ {± 1}  is a homomorphism (where {± 1}  is a 
multiplicative version of the cyclic group of order 2). 

Proof: By definition, 

( ra)(D,) = n (Xrcr (i) - Xrcr(j) ) . 
1-::;i <jsn 

Suppose that a (D.) has exactly k factors of the form x1 - x; with j > i ,  that is 
E (a) = ( - l )k .  When calculating (ra) (D.), after first applying a to the indices we see 
that (ra) (D.) has exactly k factors of the form Xr(J) - Xr(i)  with j > i .  Interchanging 
the order of the terms in these k factors introduces the sign change (- 1 )k = E (a),  and 
now all factors of (ra) (D.) are of the form x, (p} - Xr(q) •  with p < q .  Thus 

(ra)(Do) = E (a) n (Xr(p} - Xr(q) ) . 
1-::;p<qsn 

Since by definition of E 
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we have (rcr) (�) = E (cr)E (r)�. Thus E(rcr) = E (cr)E (r) = E (r)E(cr), as claimed. 

To see the proof in action, let n = 4, cr = ( 1 2  3 4) , r = (4 2 3) so rcr = ( 1 3 2 4) . 
By definition (using the explicit � in this case), 

(rcr)(�) = ( 1 3 2 4)(�) 

= (X3 - X4) (x3 - X2)(x3 - XI ) (X4 - X2) (x4 - XI )(X2 - XI )  

= (- 1)5 � 

where all factors except the first one are flipped to recover � . This shows E ( r cr) = - 1 .  
On the other hand, since we already computed cr(�) 

(rcr)(�) = r (cr(�)) 

= (Xr(2) - Xr(3j ) (Xr(2) - Xr(4j ) (Xr(2) - Xr( l j ) (Xr(3) - Xr(4) ) X 

X (Xr(3) - Xr( l ) ) (Xr (4) - Xr( l ) ) 

= ( - 1)3 n (Xr(p) - Xr(q) ) = ( - 1)3r (�) 
I::;p<q::;4 

where here the third, fifth, and sixth factors need to have their terms interchanged in 
order to put all factors in the form Xr(pJ - Xr(qJ with p < q .  We already calculated that 
E(cr) = ( - 1)3 = - 1 and, by the same method, it is easy to see that E(r) = ( - 1)2 = 1 
so E (rcr) = - 1  = E(r)E(cr) .  

The next step is  to compute E ((i j)), for any transposition ( i  j) .  Rather than 
compute this directly for arbitrary i and j we do it first for i = 1 and j = 2 and reduce 
the general case to this. It is clear that applying ( 1  2) to � (regardless of what n is) will 
flip exactly one factor, namely XI - x2 ; thus E((l 2)) = - 1 . Now for any transposition 
(i j) let )... be the permutation which interchanges 1 and i ,  interchanges 2 and j, and 
leaves all other numbers fixed (if i = 1 or j = 2, )... fixes i or j, respectively). Then 
it is easy to see that (i j) = J... ( l  2)J... (compute what the right hand side does to any 
k E { 1 ,  2, . . .  , n }). Since E is a homomorphism we obtain 

This proves 

E ((i j)) = E (J...( 1 2)J...) 
= E (A)E ((l 2))E(A) 

= (- l)E(J...P 
= - 1 . 

Proposition 24. Transpositions are all odd permutations and E is a smjective homo
morphism. 

Definition. The alternating group of degree n, denoted by All , is the kernel of the 
homomorphism E (i .e., the set of even permutations). 

Note that by the First Isomorphism Theorem Sll j All � E (Sil ) = {± 1 } , so that the 
l 1 

order of All is easily determined: lAil i = z 1 Sil l = l (n !) .  Also, Sll - All is the coset of 
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An which is not the identity coset and this is the set of all odd permutations. The signs 
of permutations obey the usual 'll/27l laws: 

(even)(even) = (odd)(odd) = even 
(even)( odd) = (odd)( even) = odd. 

Moreover, since E is a homomorphism and every u E Sn is a product of transpositions, 
say rr = 'l'J 'l'z · · · 'l'k . then E(rr) = E('l'J ) · · · E (rk) ; since E (r; )  = - 1 ,  for i =  1 ,  2, . . .  , k, 

E( u) = ( - 1  )k . Thus the class of k (mod 2), i.e., the parity of the number of transposi
tions in the product, is the same no matter how we write u as a product of transpositions: 

E (rr) = 
{ + 1 ,  

-1 ,  
if u is a product of an even number of transpositions 

if u is a product of an odd number of transpositions. 

Finally we give a quick way of computing E(rr) from the cycle decomposition of u .  
Recall that an m-cycle may be written as a product of m - 1 transpositions. Thus 

an m-cycle is an odd permutation if and only if m is even. 

For any permutation u let a1a2 · · · ak be its cycle decomposition. Then E(rr) is 
given by E (a1)  · · · E (ak) and E (a; ) = - 1  if and only if the length of a; is even. It 
follows that for E (rr) to be - 1  the product of the E (a;) ' s  must contain an odd number 
of factors of ( - 1) . We summarize this in the following proposition: 

Proposition 25. The permutation u is odd if and only if the number of cycles of even 
length in its cycle decomposition is odd. 

For example, u = ( 1 2 3 4 5 6)(7 8 9) ( 10 1 1) ( 1 2  1 3  14 15) (16 17 18) has 3 cycles 
of even length, so E (rr)  = -1 .  On the other hand, r = ( 1 12 8 10 4) (2 1 3) (5 1 1  7)(6 9) 
has exactly 2 cycles of even length, hence E ( r) = 1 .  

B e  careful not to confuse the terms "odd" and "even" for a permutation u with the 
parity of the order of u .  In fact, if u is of odd order, all cycles in the cycle decomposition 
of u have odd length so u has an even (in this case 0) number of cycles of even length 
and hence is an even permutation. If lrr I is even, u may be either an even or an odd 
permutation; e.g., ( 1  2) is odd, ( 1  2) (3 4) is even but both have order 2. 

As we mentioned in the preceding section, the alternating groups An will be im
portant in the study of solvability of polynomials. In the next chapter we shall prove: 

An is a non-abelian simple group for all n ::: 5. 

For small values of n, An is already familiar to us: A 1 and Az are both the trivial 
group and I AJ I  = 3 (so A3 = ( ( 1 2 3) ) � Z3). The group A4 has order 12. Exercise 7 
shows A4 is isomorphic to the group of symmetries of a regular tetrahedron. The lattice 
of subgroups of A4 appears in Figure 8 (Exercise 8 asserts that this is its complete 
lattice of subgroups). One of the nicer aspects of this lattice is that (unlike "virtually 
all groups") it is a planar graph (there are no crossing lines except at the vertices; see 
the lattice of D16 for a nonplanar lattice). 
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A4 

( ( 1 2)(3 4),(� � 4 / 2 � ( (1 2 3) ) ( (1 2 4)) ( (1 3 4) ) ((2 3 4))  

{(1 2)(3 4)) {( 1 3)(2 4)) { ( 1 4)(2 3)) 

2 � 
1 

Fig. 8 

E X E R C I S E S  

1. In Exercises 1 and 2 of Section 1 .3 you were asked to find the cycle decomposition of some 
permutations. Write each of these permutations as a product of transpositions. Determine 
which of these is an even permutation and which is an odd permutation. 

2. Prove that a2 is an even permutation for every permutation a .  
3. Prove that Sn i s  generated by {(i i + 1)  I 1 � i � n - 1 } .  [Consider conjugates, viz. 

(2 3) (1  2)(2 3)- 1 .] 

4. Show that Sn = ( ( 1 2), (1 2 3 . . . n) } for all n :::: 2. 

5. Show that if p is prime, Sp = ( a, T } where a is any transposition and T is any p-cycle. 

6. Show that { (1 3) , (1 2 3 4) } is a proper subgroup of S4. What is the isomorphism type of 
this subgroup? 

7. Prove that the group of rigid motions of a tetrahedron is isomorphic to A4. [Recall Exercise 
20 in Section 1 .7.] 

8. Prove the lattice of subgroups of A4 given in the text is correct. [By the preceding exercise 
and the comments following Lagrange's Theorem, A4 has no subgroup of order 6.] 

9. Prove that the (unique) subgroup of order 4 in A4 is normal and is isomorphic to V4. 
10. Find a composition series for A4. Deduce that A4 is solvable. 

11. Prove that S4 has no subgroup isomorphic to Qg. 
12. Prove that An contains a subgroup isomorphic to Sn-2 for each n :::: 3.  

13. Prove that every element of order 2 in An is  the square of an element of order 4 in Sn . [An 
element of order 2 in An is a product of 2k commuting transpositions.] 

14. Prove that the subgroup of A4 generated by any element of order 2 and any element of 
order 3 is all of A4 .  

15. Prove that i f  X and y are distinct 3-cycles in  s4 with X # y-1
' then the subgroup of  s4 

generated by x and y  is A4. 

16. Let x and y be  distinct 3-cycles in  Ss with x # y-1 . 
(a) Prove that if x and y fix a common element of { 1 ,  . . . , 5} ,  then { x , y }  � A4 .  
(b) Prove that i f  x and y do not fi x  a common element o f  { 1  • . . .  , 5 } ,  then { x, y}  = A5 . 

17. If X and y are 3-cycles in Sn . prove that ( x , y }  is isomorphic to ZJ, A4. As or z3 X ZJ . 
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CHAPTER 4 

Gro u p Actio ns 

In this chapter we consider some of the consequences of a group acting on a set. It is 
an important and recurring idea in mathematics that when one object acts on another 
then much information can be obtained on both. As more structure is added to the 
set on which the group acts (for example, groups acting on groups or groups acting 
on vector spaces (considered in Chapter 1 8)), more information on the structure of the 
group becomes available. This study of group actions culminates here in the proof of 
Sylow's Theorem and the examples and classifications which accrue from it. 

The concept of an action will recur as we study modules, vector spaces, canonical 
forms for matrices and Galois Theory, and is one of the fundamental unifying themes 
in the text. 

4. 1 GROUP ACTIONS AN D PERM UTATION REPRESENTATIONS 

In  this section we give the basic theory of group actions and then apply this theory to 
subgroups of Sn acting on { 1 , 2,  . . . , n }  to prove that every element of Sn has a unique 
cycle decomposition. In Sections 2 and 3 we apply the general theory to two other 
specific group actions to derive some important results. 

Let G be a group acting on a nonempty set A.  Recall from Section 1 .7 that for each 
g E G the map 

defined by 

is a permutation of A. We also saw in Section 1 .7  that there is a homomorphism 
associated to an action of G on A: 

defined by 

called the permutation representation associated to the given action. Recall some 
additional terminology associated to group actions introduced in Sections 1 .7 and 2.2. 

Definition. 
(1) The kernel of the action is the set of elements of G that act trivially on every 

element of A :  {g E G I g · a = a for all a E A} .  
(2) For each a E A the stabilizer of a in G i s  the set of elements of G that fix the 

element a :  {g E G I g · a = a}  and is denoted by Ga . 
(3) An action is faithful if its kernel is the identity. 
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Note that the kernel of an action is precisely the same as the kernel of the associated 
permutation representation; in particular, the kernel is a normal subgroup of G.  Two 
group elements induce the same permutation on A if and only if they are in the same coset 
of the kernel (if and only if they are in the same fiber of the permutation representation 
cp ) . In particular an action of G on A may also be viewed as a faithful action of the 
quotient group G I ker cp on A.  Recall from Section 2.2 that the stabilizer in G of an 
element a of A is a subgroup of G. If a is a fixed element of A, then the kernel of 
the action is contained in the stabilizer G a since the kernel of the action is the set of 
elements of G that stabilize every point, namely naeA Ga . 

Examples 

(1) Let n be a positive integer. The group G = S11 acts on the set A = { I ,  2, . . .  , n} 
by a · i = a (i) for all i E {I , . . .  , n} .  The permutation representation associated 
to this action is the identity map cp : S11 � S11 • This action is faithful and for each 
i E { I ,  . . .  , n} the stabilizer G; (the subgroup of all permutations fixing i) is isomorphic 
to S11- J  (cf. Exercise IS ,  Section 3.2). 

(2) Let G = Ds act on the set A consisting of the four vertices of a square. Label these 
vertices 1 ,2,3,4 in a clockwise fashion as in Figure 2 of Section 1 .2. Let r be the 
rotation of the square clockwise by :n: j2 radians and let s be the reflection in the line 
which passes through vertices 1 and 3. Then the permutations of the vertices given by 
r and s are 

ar = (1  2 3 4) and as =  (2 4) . 

Note that since the permutation representation is a homomorphism, the permutation 
of the four vertices corresponding to sr is asr = asar = (1 4) (2 3). The action of Ds 
on the four vertices of a square is faithful since only the identity symmetry fixes all 
four vertices. The stabilizer of any vertex a is the subgroup of Ds of order 2 generated 
by the reflection about the line passing through a and the center of the square (so, for 
example, the stabilizer of vertex I is ( s ) ). 

(3) Label the four vertices of a square as in the preceding example and now let A be the set 
whose elements consist ofunorderedpairs ofopposite vertices: A =  { { 1 ,  3} , {2, 4} }. 
Then Ds also acts on this set A since each symmetry of the square sends a pair of 
opposite vertices to a pair of opposite vertices. The rotation r interchanges the pairs 
{ I ,  3} and {2, 4}; the reflection s fixes both unordered pairs of opposite vertices. Thus 
if we label the pairs { I ,  3} and {2, 4} as 1 and 2, respectively, then the permutations of 
A given by r and s are 

ar = (1 2) and as = the identity permutation. 

This action of Ds is not faithful: its kernel is ( s, r2 ) • Moreover, for each a E A the 
stabilizer in Ds of a is the same as the kernel of the action. 

(4) Label the four vertices of a square as in Example 2 and now let A be the following set 
of unordered pairs of vertices: { { I ,  2}, {3 , 4} }. The group Ds does not act on this set 
A because { 1 ,  2} E A but r · { I ,  2} = {2, 3} ¢ A. 

The relation between actions and homomorphisms into symmetric groups may be 
reversed. Namely, given any nonempty set A and any homomorphism cp of the group 
G into SA we obtain an action of G on A by defining 

g · a = cp(g)(a) 
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for all g E G and all a E A. The kernel of this action is the same as ker �. The permu
tation representation associated to this action is precisely the given homomorphism �
This proves the following result. 

Proposition 1. For any group G and any nonempty set A there is a bijection between 
the actions of G on A and the homomorphisms of G into SA .  

In view of Proposition 1 the definition of a permutation representation may be 
rephrased. 

Definition. If G is a group, a permutation representation of G is any homomorphism 
of G into the symmetric group SA for some nonempty set A. We shall say a given action 
of G on A affords or induces the associated permutation representation of G. 

We can think of a permutation representation as an analogue of the matrix repre
sentation of a linear transformation. In the case where A is a finite set of n elements we 
have SA � Sn (cf. Section 1 .6), so by fixing a labelling of the elements of A we may 
consider our permutations as elements of the group Sn (which is exactly what we did in 
Examples 2 and 3 above), in the same way that fixing a basis for a vector space allows 
us to view a linear transformation as a matrix. 

We now prove a combinatorial result about group actions which will have important 
consequences when we apply it to specific actions in subsequent sections. 

Proposition 2. Let G be a group acting on the nonempty set A. The relation on A 
defined by 

a ""' b if and only if a = g · b for some g E G 

is an equivalence relation. For each a E A, the number of elements in the equivalence 
class containing a is I G : G a I ,  the index of the stabilizer of a . 

Proof" We first prove ""' is an equivalence relation. By axiom 2 of an action, a = 1 ·a 
for all a E A, i.e., a ""' a and the relation is reflexive. If a ""' b, then a = g · b for some 
b E G  so that 

g -I . a = g -l . (g . b) = (g- Ig) · b = 1 · b = b 

that is, b ""' a and the relation is symmetric. Finally, if a ""' b and b ""' c, then a = g · b 
and b = h · c, for some g, h E G so 

a = g · b = g · (h · c) = (gh) · c 
hence a ""' c, and the relation is transitive. 

To prove the last statement of the proposition we exhibit a bijection between the 
left cosets of G a in G and the elements of the equivalence class of a .  Let Ca be the class 
of a, so 

Ca = {g · a I g E G} . 

Suppose b = g · a E Ca . Then gG a is a left coset of G a in G. The map 

b = g · a t--7 gGa 
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is a map from Ca to the set of left cosets of G a in G. This map is surjective since for 
any g E G the element g · a is an element of Ca . Since g · a = h · a if and only if 
h-1g E Ga if and only if gGa = hGa . the map is also injective, hence is a bijection. 
This completes the proof. 

By Proposition 2 a group G acting on the set A partitions A into disjoint equivalence 
classes under the action of G. These classes are given a name: 

Definition. Let G be a group acting on the nonempty set A. 
(1)  The equivalence class {g · a I g E G}  is called the orbit of G containing a .  

(2) The action of G on A is  called transitive if  there is  only one orbit, i.e., given 
any two elements a ,  b E  A there is some g E G such that a =  g · b. 

Examples 

Let G be a group acting on the set A.  
(1) If G acts trivially on A then Ga = G for all a E A and the orbits are the elements of 

A. This action is transitive if and only if I A I  = 1 .  
(2) The symmetric group G = Sn acts transitively in its usual action as permutations on 

A = { 1 ,  2, . . . , n} .  Note that the stabilizer in G of any point i has index n = I A I  in Sn . 
(3) When the group G acts on the set A, any subgroup of G also acts on A. If G is 

transitive on A a subgroup of G need not be transitive on A. For example, if G = 
( ( 1  2) , (3 4) } � S4 then the orbits of G on { 1 ,  2, 3 ,  4} are { 1 ,  2} and (3 ,  4} and there 
is no element of G that sends 2 to 3 .  The discussion below on cycle decompositions 
shows that when ( a  } is any cyclic subgroup of Sn then the orbits of ( a  } consist of 
the sets of numbers that appear in the individual cycles in the cycle decomposition of 
a (for example, the orbits of ( ( 1  2)(3 4 5) } are { 1 ,  2} and { 3 ,  4, 5}). 

(4) The group Dg acts transitively on the four vertices of the square and the stabilizer of 
any vertex is the subgroup of order 2 (and index 4) generated by the reflection about 
the line of symmetry passing through that point. 

(5) The group Dg also acts transitively on the set of two pairs of opposite vertices. In this 
action the stabilizer of any point is ( s, r2 } (which is of index 2). 

Cycle Decompositions 

We now prove that every element of the symmetric group Sn has the unique cycle 
decomposition described in Section 1 .3 .  Let A = { 1 ,  2, . . .  , n } ,  let a be an element 
of Sn and let G = ( a } . Then ( a } acts on A and so, by Proposition 2, it partitions 
{ 1 ,  2, . . .  , n} into a unique set of (disjoint) orbits. Let 0 be one of these orbits and let 
x E 0. By (the proof of) Proposition 2 applied to A = 0 we see that there is a bijection 
between the left cosets of G x in G and the elements of 0, given explicitly by 

Since G is a cyclic group, Gx � G and GfGx is cyclic of order d, where d is the 
smallest positive integer for which ad E Gx (cf. Example 2 following Proposition 7 in 
Section 3 . 1) .  Also, d = I G  : Gx l = 10 1 .  Thus the distinct cosets of Gx in G are 
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This shows that the distinct elements of 0 are 

x , a (x) , a2 (x) , . . .  , ad-1 (x) .  
Ordering the elements of  0 in  this manner shows that <1 cycles the elements of 0,  
that is, on an orbit of size d, <1 acts as a d -cycle. This proves the existence of a cycle 
decomposition for each <1 E Sn . 

The orbits of ( a ) are uniquely determined by <1 .  The only latitude is in which 
order the orbits are listed. Within each orbit, 0, we may begin with any element as a 
representative. Choosing ai (x) instead of x as the initial representative simply produces 
the elements of 0 in the order 

ai (x),  ai+l (x) ,  . . .  , ad-1 (x) , x , a (x) ,  . . .  , ai-1 (x) , 

which is a cyclic permutation (forward i - 1 terms) of the original list. It follows that 
the cycle decomposition above is unique up to a rearrangement of the cycles and up to 
a cyclic permutation of the integers within each cycle. 

Subgroups of symmetric groups are called pennutation groups. For any subgroup 
G of Sn the orbits of G will refer to its orbits on { 1 ,  2, . . . , n} .  The orbits of an element 
<1 in Sn will mean the orbits of the group ( <1 } (namely the sets of integers comprising 
the cycles in its cycle decomposition). 

The exercises below further illustrate how group theoretic information can be ob
tained from permutation representations. 

E X E R C I S E S 

Let G be a group and let A be a nonempty set. 

1. Let G act on the set A. Prove that if a, b E A and b = g · a  for some g E G, then 
Gb = gGag-1 (Ga is the stabilizer of a). Deduce that if G acts transitively on A then the 
kernel of the action is ngEG gGag-1 • 

2. Let G be a pennutation group on the set A (i.e., G :::; SA), let a E G and let a E A. Prove 
that a Gaa- 1 = Gu (a) · Deduce that if G acts transitively on A then 

n a Gaa- 1 = 1 .  
<rEG 

3. Assume that G is an abelian, transitive subgroup of SA . Show that a (a) =f. a for all 
a E G - { 1 }  and all a E A. Deduce that I G I  = I A I . [Use the preceding exercise.] 

4. Let S3 act on the set Q of ordered pairs: { (i , j }  1 1  ::==; i , j :::; 3 } by a ((i, j)} = (a(i} , a (j)).  
Find the orbits of S3 on Q. For each a E S3 find the cycle decomposition of a under this 
action (i .e., find its cycle decomposition when a is considered as an element of S9 - first 
fix a labelling of these nine ordered pairs). For each orbit 0 of S3 acting on these nine 
points pick some a E 0 and find the stabilizer of a in S3 . 

5. For each of parts (a) and (b) repeat the preceding exercise but with S3 acting on the specified 
set: 
(a) the set of 27 triples { (i ,  j, k) 1 1  :::; i, j, k :::; 3} 
(b) the set P({ 1 ,  2, 3}) - {0} of all 7 nonempty subsets of { 1 ,  2, 3} .  

6. As in Exercise 12  of Section 2.2 let R be the set of all polynomials with integer coefficients 
in the independent variables XJ , xz , x3 , x4 and let S4 act on R by permuting the indices of 
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the four variables: 

a · p(Xt , X2 , X] , X4) = p(Xu(l) •  Xu(2) •  Xu(3) • Xu (4) ) 

for all a E S4. 
(a) Find the polynomials in the orbit of S4 on R containing Xt + x2 (recall from Exercise 

12 in Section 2.2 that the stabilizer of this polynomial has order 4). 
(b) Find the polynomials in the orbit of S4 on R containing XtX2 + X3X4 (recall from 

Exercise 1 2  in Section 2.2 that the stabilizer of this polynomial has order 8). 
(c) Find the polynomials in the orbit of s4 on R containing (Xt + X2) (X3 + X4) .  

7. Let G be a transitive permutation group on the finite set A. A block is a nonempty subset 
B of A such that for all a E G either a (B) = B or a (B) n B = 0 (here a (B) is the set 
{a (b) I b E  B}).  
(a) Prove that if B is a block containing the element a of A, then the set G B defined by 

GB = {a E G I a (B) = B }  is a subgroup of G containing Ga . 
(b) Show that if B is a block and at (B) ,  a2 (B) , . . .  , an (B) are all the distinct images of 

B under the elements of G, then these form a partition of A. 
(c) A (transitive) group G on a set A is said to be primitive if the only blocks in A 

are the trivial ones: the sets of size 1 and A itself. Show that S4 is primitive on 
A = { 1 , 2, 3, 4} . Show that Ds is not primitive as a permutation group on the four 
vertices of a square. 

(d) Prove that the transitive group G is primitive on A if and only if for each a E A, the 
only subgroups of G containing Ga are Ga and G (i.e., Ga is a maximal subgroup of 
G, cf. Exercise 16, Section 2.4). [Use part (a).] 

8. A transitive permutation group G on a set A is called doubly transitive if for any (hence 
all) a E A the subgroup Ga is transitive on the set A - {a}. 
(a) Prove that Sn is doubly transitive on { 1, 2, . . .  , n }  for all n ::: 2. 
(b) Prove that a doubly transitive group is primitive. Deduce that D8 is not doubly 

transitive in its action on the 4 vertices of a square. 

9. Assume G acts transitively on the finite set A and let H be a normal subgroup of G. Let 
01 . 02 , . . .  , 0, be the distinct orbits of H on A.  
(a) Pro�e that G permutes the sets Ot , 02 , . . .  , 0, in the sense that for each g E G and 

each i E { 1 , . . . •  r} there is a j such that gO; = oj . where gO = {g . a I a E O} (i.e., 
in the notation of Exercise 7 the sets 01 , . . .  , 0, are blocks). Prove that G is transitive 
on {Ot , . . .  , 0, }. Deduce that all orbits of H on A have the same cardinality. 

(b) Prove that if a E Ot then l Ot i  = IH  : H n Ga l and prove that r = IG  : HGa l ·  
[Draw the sublattice describing the Second Isomorphism Theorem for the subgroups 
H and Ga of G. Note that H n Ga = Ha . ]  

10. Let H and K be subgroups of the group G. For each x E G define the H K double coset 
of x in G to be the set 

HxK = {hxk I h E  H, k E K } . 

(a) Prove that HxK is the union of the left cosets XtK • . . .  , Xn K where {xt K, . . .  , Xn K }  
i s  the orbit containing x K of H acting by left multiplication on the set o f  left cosets 
of K.  

(b) Prove that H x K is  a union of  right cosets of H. 
(c) Show that HxK and HyK are either the same set or are disjoint for all x ,  y E G. 

Show that the set of H K double cosets partitions G. 
(d) Prove that IHxK I  = I K I  · I H : H n xKx- 1 1 . 
(e) Prove that IHxK I  = I HI · IK : K n x-1 Hx i .  
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4.2 GROUPS ACTING ON THEMSELVES BY LEFT MULTIPLICATION 
- CAYLEY'S THEOREM 

In this section G is any group and we first consider G acting on itself (i.e., A = G) by 
left multiplication: 

g - a =  ga for all g E G, a E G 
where ga denotes the product of the two group elements g and a in G (if G is written 
additively, the action will be written g - a = g + a and called left translation). We saw 
in Section 1 .7 that this satisfies the two axioms of a group action. 

When G is a finite group of order n it is convenient to label the elements of G with 
the integers 1 ,  2, . . . , n in order to describe the permutation representation afforded by 
this action. In this way the elements of G are listed as g1 . g2 , . . . •  gn and for each 
g E G the permutation a g may be described as a permutation of the indices 1 ,  2, . . . . n 
as follows: 

ag (i) = j if and only if 

A different labelling of the group elements will give a different description of ag as a 
permutation of { 1 ,  2, . . .  , n }  (cf. the exercises). 

Example 

Let G = { 1 ,  a ,  b, c} be the Klein 4-group whose group table is written out in Section 
2.5. Label the group elements 1 ,  a ,  b, c with the integers 1 ,2,3,4, respectively. Under this 
labelling we compute the permutation aa induced by the action of left multiplication by 
the group element a:  

a ·  1 = a 1  = a  and so aa O)  = 2 
a · a = aa = 1 and so a a (2) = 1 
a ·  b = ab = c and so aa (3) = 4 and 
a ·  c = ac = b and so aa (4) = 3. 

With this labelling of the elements of G we see that aa = ( 1  2) (3 4). In the permutation 
representation associated to the action of the Klein 4-group on itself by left multiplication 
one similarly computes that 

a H- aa = ( 1  2)(3 4) b H- ab = ( 1  3) (2 4) c H- ac = ( 1  4) (2 3) , 

which explicitly gives the permutation representation G � S4 associated to this action 
under this labelling. 

It is easy to see (and we shall prove this shortly in a more general setting) that the 
action of a group on itself by left multiplication is always transitive and faithful, and 
that the stabilizer of any point is the identity subgroup (these facts can be checked by 
inspection for the above example). 

We now consider a generalization of the action of a group by left multiplication on 
the set of its elements. Let H be any subgroup of G and let A be the set of all left cosets 
of H in G. Define an action of G on A by 

g - aH = gaH for all g E G, aH E A 
where gaH is the left coset with representative ga . One easily checks that this satisfies 
the two axioms for a group action, i.e., that G does act on the set of left cosets of H 
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by left multiplication. In the special case when H is the identity subgroup of G the 
coset a H is just {a} and if we identify the element a with the set {a}, this action by left 
multiplication on left cosets of the identity subgroup is the same as the action of G on 
itself by left multiplication. 

When H is of finite index m in G it is convenient to label the left cosets of H with the 
integers 1 ,  2, . . . , m in order to describe the permutation representation afforded by this 
action. In this way the distinct left cosets of H in G are listed as a1 H, azH, . . .  , amH 
and for each g E G the permutation ag may be described as a permutation of the indices 
1 ,  2, . . . , m as follows: 

ag (i) = j  if and only if ga; H = aj H. 

A different labelling of the group elements will give a different description of ag as a 
permutation of { 1 ,  2, . . . , m} (cf. the exercises). 

Example 

Let G = Ds and let H = ( s ) . Label the distinct left cosets 1 H, r H, r2 H, r3 H with the 
integers 1 ,2,3,4 respectively. Under this labelling we compute the permutation as induced 
by the action of left multiplication by the group element s on the left cosets of H: 

s · 1 H  = sH = 1H and so asO) = I 
s · rH = srH = r3 H and so as (2) = 4 
s · r2 H = sr2 H = r2 H and so as (3) = 3 
s · r3 H = sr3H = rH and so as (4) = 2. 

With this labelling of the left cosets of H we obtain as = (2 4) . In the permutation 
representation associated to the action of Ds on the left cosets of ( s ) by left multiplication 
one similarly computes that ar = ( 1  2 3 4). Note that the permutation representation is a 
homomorphism, so once its value has been determined on generators for Ds its value on 
any other element can be determined (e.g., asr2 = as a;). 

Theorem 3. Let G be a group, let H be a subgroup of G and let G act by left multi
plication on the set A of left cosets of H in G.  Let rr H be the associated permutation 
representation afforded by this action. Then 

(1) G acts transitively on A 
(2) the stabilizer in G of the point 1 H E A is the subgroup H 
(3) the kernel of the action (i.e., the kernel of 7TH) is nxeG x Hx-1 ,  and ker 7TH is 

the largest normal subgroup of G contained in H.  

Proof To see that G acts transitively on A, let aH and bH be any two elements 
of A,  and let g = ba-1 • Then g · aH = (ba-1 )aH = bH, and so the two arbitrary 
elements aH and bH of A lie in the same orbit, which proves ( 1 ). For (2), the stabilizer 
ofthe point l H is, by definition, {g E G I g · l H  = l H}, i.e., {g E G I gH = H} = H. 

By definition of 7TH we have 

ker rrH = {g E G I gxH = xH for all x E G} 

= {g E G I (x-1gx) H  = H for all x E G} 

= {g E G I x- 1 gx E H for all x E G} 

= {g  E G I g  E xHx-l for all x E G} = n xHx-1 , 
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which proves the first assertion of (3 ). The second assertion of (3) comes from observing 
first thatker rr H ::::) G and ker rr H ::::: H. If now N is any normal subgroup of G contained 
in H then we have N = xNx-1 ::::: xHx-1 for all x E G so that 

N ::::: n xHx-1 = ker rr11 . 
XEG 

This shows that ker rr H is the largest normal subgroup of G contained in H. 

Corollary 4.  (Cayley 's Theorem) Every group is  isomorphic to a subgroup of some 
symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of Sn . 

Proof" Let H = 1 and apply the preceding theorem to obtain a homomorphism of 
G into Sc (here we are identifying the cosets of the identity subgroup with the elements 
of G). Since the kernel of this homomorphism is contained in H = 1 ,  G is isomorphic 
to its image in Sc . 

Note that G is isomorphic to a subgroup of a symmetric group, not to the full sym
metric group itself. For example, we exhibited an isomorphism of the Klein 4-group 
with the subgroup ( (1 2) (3 4) , (1 3) (2 4) ) of S4. Recall that subgroups of symmetric 
groups are called permutation groups so Cayley's Theorem states that every group is 
isomorphic to a permutation group. The permutation representation afforded by left 
multiplication on the elements of G (cosets of H = 1 )  is called the left regular rep
resentation of G.  One might think that we could study all groups more effectively by 
simply studying subgroups of symmetric groups (and all finite groups by studying sub
groups of Sn , for all n ). This approach alone is neither computationally nor theoretically 
practical, since to study groups of order n we would have to work in the much larger 
group Sn (cf. Exercise 7, for example). 

Historically, finite groups were first studied not in an axiomatic setting as we have 
developed but as subgroups of Sn . Thus Cayley's Theorem proves that the historical 
notion of a group and the modem (axiomatic) one are equivalent. One advantage of 
the modem approach is that we are not, in our study of a given group, restricted to 
considering that group as a subgroup of some particular symmetric group (so in some 
sense our groups are "coordinate free"). 

The next result generalizes our result on the normality of subgroups of index 2. 

Corollary 5. If G is a finite group of order n and p is the smallest prime dividing I G I ,  
then any subgroup of index p i s  normal. 

Remark: In general, a group of order n need not have a subgroup of index p (for 
example, A4 has no subgroup of index 2). 

Proof· Suppose H ::::: G and IG : H I =  p. Let 7rH be the permutation represen
tation afforded by multiplication on the set of left cosets of H in G, let K = ker rr H 
and let I H  : K l = k. Then I G  : K l = I G : H I I H  : K l = pk. Since H has p 
left cosets, G f K is isomorphic to a subgroup of Sp (namely, the image of G under rr H )  
by the First Isomorphism Theorem. B y  Lagrange's Theorem, pk = I G/ K l  divides p ! .  
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Thus k I p !  
= (p - 1 ) ! .  But all prime divisors of (p - 1 ) !  are less than p and by 

p 
the rninimality of p, every prime divisor of k is greater than or equal to p. This forces 
k = 1 ,  so H =  K � G, completing the proof. 

E X E R C I S E S  

Let G be a group and let H be a subgroup of G.  

1. Let G = {1 ,  a ,  b, c} be the Klein 4-group whose group table is written out in Section 2.5. 
(a) Label 1, a , b, c with the integers 1 ,2,4,3, respectively, and prove that under the left 

regular representation of G into S4 the nonidentity elements are mapped as follows: 

a �---+ (l 2)(3 4) b 1--+ (1 4) (2 3) c 1--+ ( 1 3) (2 4) . 

(b) Relabel 1 ,  a ,  b, c as 1 ,4,2,3, respectively, and compute the image of each element of 
G under the left regular representation of G into S4. Show that the image of G in S4 
under this labelling is the same subgroup as the image of G in part (a) (even though 
the nonidentity elements individually map to different permutations under the two 
different labellings). 

2. List the elements of S3 as 1 ,  (l 2), (2 3), ( 1 3), (1 2 3), (1 3 2) and label these with the 
integers 1 ,2,3,4,5,6 respectively. Exhibit the image of each element of S3 under the left 
regular representation of s3 into s6. 

3. Let r and s be the usual generators for the dihedral group of order 8. 
(a) List the elements of Ds as 1 ,  r, r2, r3 , s, sr, sr2, sr3 and label these with the integers 

1 , 2, . . .  , 8 respectively. Exhibit the image of each element of Ds under the left regular 
representation of Ds into Ss . 

(b) Relabel this same list of elements of Ds with the integers 1 ,  3, 5, 7, 2, 4, 6, 8 re
spectively and recompute the image of each element of Ds under the left regular 
representation with respect to this new labelling. Show that the two subgroups of Ss 
obtained in parts (a) and (b) are different. 

4. Use the left regular representation of Qs to produce two elements of Ss which generate a 
subgroup of Ss isomorphic to the quaternion group Qs .  

5.  Let r and s be the usual generators for the dihedral group of order 8 and let H = ( s } . List 
the left cosets of H in Ds as 1 H, r H, r2 H and r3 H. 
(a) Label these cosets with the integers 1 ,2,3,4, respectively. Exhibit the image of each 

element of Ds under the representation 7rH of Ds into S4 obtained from the action 
of Ds by left multiplication on the set of 4 left cosets of H in Ds . Deduce that this 
representation is faithful (i.e., the elements of S4 obtained form a subgroup isomorphic 
to Ds). 

(b) Repeat part (a) with the list of cosets relabelled by the integers 1 ,3,2,4, respectively. 
Show that the permutations obtained from this labelling form a subgroup of S4 that 
is different from the subgroup obtained in part (a). 

(c) Let K = ( sr }, list the cosets of K in Ds as 1 K ,  r K, r2 K and r3 K, and label these 
with the integers 1 ,2,3,4. Prove that, with respect to this labelling, the image of Ds 
under the representation n K obtained from left multiplication on the cosets of K is 
the same subgroup of S4 as in part (a) (even though the subgroups H and K are 
different and some of the elements of Ds map to different permutations under the two 
homomorphisms). 
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6. Let r and s be the usual generators for the dihedral group of order 8 and let N = ( r2 ) . List 
the left cosets of N in Ds as l N, rN, sN and srN. Label these cosets with the integers 
1 ,2,3,4 respectively. Exhibit the image of each element of Ds under the representation 

rr N of Ds into S4 obtained from the action of Ds by left multiplication on the set of 4 left 
cosets of N in Ds. Deduce that this representation is not faithful and prove that rrN (Ds) 
is isomorphic to the Klein 4-group. 

7. Let Qs be the quatemion group of order 8. 
(a) Prove that Qs is isomorphic to a subgroup of Sg. 
(b) Prove that Qs is not isomorphic to a subgroup of Sn for any n � 7. [If Qs acts on 

any set A of order ::5 7 show that the stabilizer of any point a E A must contain the 
subgroup ( - 1 ) . ]  

8. Prove that if  H has finite index n then there is a normal subgroup K of G with K � H 
and I G  : Kl � n ! .  

9. Prove that i f  p i s  a prime and G i s  a group of order pa for some a E z+, then every 
subgroup of index p is normal in G. Deduce that every group of order p2 has a normal 
subgroup of order p. 

10. Prove that every non-abelian group of order 6 has a nonnormal subgroup of order 2. Use 
this to classify groups of order 6. [Produce an injective homomorphism into S3 .] 

11. Let G be a finite group and let rr : G -+ SG be the left regular representation. Prove that 
if x is an element of G of order n and I G I  = mn, then rr(x) is a product of m n-cycles. 

Deduce that rr(x) is an odd permutation if and only if lx l is even and !_g_ is odd. 
lx l 

12. Let G and rr be as in the preceding exercise. Prove that if rr (G) contains an odd permutation 
then G has a subgroup of index 2. [Use Exercise 3 in Section 3.3.] 

13. Prove that if I G I  = 2k where k is odd then G has a subgroup of index 2. [Use Cauchy's 
Theorem to produce an element of order 2 and then use the preceding two exercises.] 

14. Let G be a finite group of composite order n with the property that G has a subgroup of 
order k for each positive integer k dividing n. Prove that G is not simple. 

4.3 GROUPS ACTI NG ON THEMSELVES BY CONJUGATION 
-THE CLASS EQUATION 

In this section G is any group and we first consider G acting on itself (i.e., A = G) by 
conjugation : 

g · a = gag-1 for all g E G, a E G 

where gag-1 is computed in the group G as usual. This definition satisfies the two 
axioms for a group action because 

gl · (g2 · a) = gl · (g2ag2 1 ) = g1 (g2ag21 )g) 1 
= (g ig2)a(gig2)- 1 = (glg2) · a 

and 

1 - a =  la l-1 = a  

for all gl , g2 E G and all a E G. 
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Definition. Two elements a and b of G are said to be conjugate in G if there is some 
g E G such that b = gag-1 (i.e., if and only if they are in the same orbit of G acting 
on itself by conjugation). The orbits of G acting on itself by conjugation are called the 
conjugacy classes of G. 

Examples 

(1) If G is an abelian group then the action of G on itself by conjugation is the trivial 
action: g · a =  a, for all g, a E G, and for each a E G the conjugacy class of a is {a} .  

(2) If  I G I  > 1 then, unlike the action by left multiplication, G does not act transitively 
on itself by conjugation because { 1 } is always a conjugacy class (i.e., an orbit for this 
action). More generally, the one element subset {a} is a conjugacy class if and only if 
gag-1 = a  for all g E G if and only if a is in the center of G. 

(3) In S3 one can compute directly that the conjugacy classes are { 1 } ,  { ( 1 2) , ( 1 3) ,  (2 3)} 
and {(1 2 3),  ( 1 3 2)} . We shall shortly develop techniques for computing conjugacy 
classes more easily, particularly in symmetric groups. 

As in the case of a group acting on itself by left multiplication, the action by 
conjugation can be generalized. If S is any subset of G, define 

gSg-1 = {gsg-1 I s E S}. 
A group G acts on the set P( G) of all subsets of itself by defining g · S = g S g - I  for 
any g E G and S E P(G). As above, this defines a group action of G on P(G). Note 
that if S is the one element set {s} then g · S is the one element set {gsg-1 } and so this 
action of G on all subsets of G may be considered as an extension of the action of G 
on itself by conjugation. 

Definition. Two subsets S and T of G are said to be conjugate in G if there is some 
g E G such that T = gsg-1 (i.e., if and only if they are in the same orbit of G acting 
on its subsets by conjugation). 

We now apply Proposition 2 to the action of G by conjugation. Proposition 2 proves 
that if S is a subset of G, then the number of conjugates of S equals the index I G : G s I 
of the stabilizer G s of S. For action by conjugation 

Gs = {g E G I gSg-1 
= S} = NG (S) 

is the normalizer of S in G. We summarize this as 

Proposition 6. The number of conjugates of a subset S in a group G is the index of the 
normalizer of S, I G  : NG (S) I .  In particular, the number of conjugates of an element s 
of G is the index of the centralizer of s ,  I G  : CG (s) l .  

Proof: The second assertion of the proposition follows from the observation that 
NG ({s }) = CG (s) .  

The action of G on itself by conjugation partitions G into the conjugacy classes 
of G, whose orders can be computed by Proposition 6. Since the sum of the orders of 
these conjugacy classes is the order of G, we obtain the following important relation 
among these orders. 
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Theorem 7. (The Class Equation) Let G be a finite group and let g1 , g2 , . . .  , gr be 
representatives of the distinct conjugacy classes of G not contained in the center Z (G) 
of G. Then 

r 

I G I = I Z(G) I  + L I G : Ca (g; ) l . 
i=1  

Proof" As noted in Example 2 above the element {x} is  a conjugacy class of size 1 if 
and only if x E Z(G), since then gxg-1 = x for all g E G. Let Z(G) = { l , z2 • . . .  , zm },  
let K1 , K2 , . . .  , Kr be the conjugacy classes of G not contained in the center, and let g; 
be a representative of K; for each i . Then the full set of conjugacy classes of G is given 
by 

Since these partition G we have 
m r 

I G I = L l + L IK; I  
i=1  i=1 

= I Z(G) I + L I G : CG (g; ) l ,  
i=1  

where IK; I is given by Proposition 6. This proves the class equation. 
Note in particular that all the summands on the right hand side of the class equation 

are divisors of the group order since they are indices of subgroups of G .  This restricts 
their possible values (cf. Exercise 6, for example). 

Examples 

(1) The class equation gives no information in an abelian group since conjugation is the 
trivial action and all conjugacy classes have size 1 .  

(2) In any group G w e  have ( g ) :::; C G (g) ;  this observation helps to minimize com
putations of conjugacy classes. For example, in the quatemion group Qs we see 
that ( i ) :::; CQ8 (i) :::=: Qg. Since i ¢ Z(Qs) and I Qs : ( i ) l = 2, we must have 

CQ8 (i) = ( i ) . Thus i has precisely 2 conjugates in Qg, namely i and -i = kik-1 • 
The other conjugacy classes in Qs are determined similarly and are 

( 1 } , {- 1 } , {±i } ,  {±j } , {±k}.  

The first two classes form Z(Qs) and the class equation for this group is 

I Qs l = 2 + 2 + 2 + 2. 

(3) In Ds we may also use the fact · that the three subgroups of index 2 are abelian to 
quickly see that if x ¢ Z(Ds). then I Cn8 (x) l  = 4. The conjugacy classes of Ds are 
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{ 1 } , (r2 } , {r, r3 } , {s, sr2} , {sr, sr3 } . 
The first two classes form Z(Ds) and the class equation for this group is 

I Ds l = 2 + 2 + 2 + 2. 
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Before discussing more examples of conjugacy we give two important conse
quences of the class equation. The first application of the class equation is to show 
that groups of prime power order have nontrivial centers, which is the starting point for 
the study of groups of prime power order (to which we return in Chapter 6). 

Theorem 8. If p is a prime and P is a group of prime power order pa for some a ;:: 1 ,  
then P has a nontrivial center: Z(P) ::j:. 1 .  

Proof" B y  the class equation 
r 

i=l  

where g1 , . . •  , gr are representatives of the distinct non-central conjugacy classes. By 
definition, C p (g; ) ::j:. P for i = 1 ,  2, . . . , r so p divides I P : C p (g; ) J .  Since p also 
divides J P I  it follows that p divides J Z(P) J ,  hence the center must be nontrivial. 

Corollary 9. If I P I  = p2 for some prime p, then P is abelian. More precisely, P is 
isomorphic to either Z p2 or Z P x Z P . 

Proof" Since Z(P) ::j:. 1 by the theorem, it follows that PjZ(P) is cyclic. By 
Exercise 36, Section 3 . 1 , P is abelian. If P has an element of order p2, then P is 
cyclic. Assume therefore that every nonidentity element of P has order p.  Let x be 
any nonidentity element of P and let y E P - ( x  ). Since J ( x , y ) J  > J ( x  ) J  = p, we 
must have that P = ( x ,  y ) . Both x and y have order p so ( x ) x ( y ) = Z P x Z P . It 
now follows directly that the map (xa , yb) �---+ xa yb is an isomorphism from ( x ) x ( y ) 
onto P. This completes the proof. 

Conjugacy in  Sn 
We next consider conjugation in symmetric groups. Readers familiar with linear algebra 
will recognize that in the matrix group G Ln (F), conjugation is the same as "change of 
basis": A �---+ P AP-1 • The situation in Sn is analogous: 

Proposition 10. Let a, T be elements of the symmetric group Sn and suppose a has 
cycle decomposition 

(a1 a2 . . . ak, )  (bt bz . . . h2 ) • • • • 
Then rar-1 has cycle decomposition 

( r (a1 ) r (az) . . . r (ak, ) )  ( r (b1 ) r (bz) . . .  r(bk2 ) ) • • • , 
that is, TO'T-1 is obtained from a by replacing each entry i in the cycle decomposition 
for a by the entry r (i). 

Proof" Observe that if a (i ) = j, then 

rar-1 (r (i) ) = r (j) .  
Thus, if the ordered pair i , j appears in  the cycle decomposition of a, then the ordered 
pair r (i) , r (j) appears in the cycle decomposition of rar-1 .  This completes the proof. 
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Example 
Let a = (1 2) (3 4 5)(6 7  8 9) and let T = (1 3 5 7) (2 4 6  8). Then 

TlTT-I = (3 4) (5 6 7)(8 1 2 9) .  

Definition. 
(1) If u E Sn is the product of disjoint cycles of lengths n t ,  nz , . . .  , nr with 

n 1 � nz � · · · � nr (including its 1 -cycles) then the integers n 1 , nz, . . . , nr are 
called the cycle type of u .  

(2) If n E z+, a partition of n i s  any nondecreasing sequence of positive integers 
whose sum is n .  

Note that by the results of the preceding section the cycle type of a permutation i s  
unique. For example, the cycle type of an m-cycle in  Sn i s  1 ,  1 ,  . . .  , 1 ,  m,  where the m 
is preceded by n - m ones. 

Proposition 11. Two elements of Sn are conjugate in Sn if and only if they have the 
same cycle type. The number of conjugacy classes of Sn equals the number of partitions 
of n. 

Proof: By Proposition 1 0, conjugate permutations have the same cycle type. Con
versely, suppose the permutations O'J and O'z have the same cycle type. Order the cycles 
in nondecreasing length, including 1-cycles (if several cycles of O'J and O'z have the 
same length then there are several ways of doing this). Ignoring parentheses, each 
cycle decomposition is a list in which all the integers from 1 to n appear exactly once. 
Define r to be the function which maps the ith integer in the list for u1 to the ith integer 
in the list for u2 . Thus r is a permutation and since the parentheses which delineate the 
cycle decompositions appear at the same positions in each list, Proposition 1 0  ensures 
that rut r - 1 = u2, so that u1 and O'z are conjugate. 

Since there is a bijection between the conjugacy classes of Sn and the permissible 
cycle types and each cycle type for a permutation in Sn is a partition of n, the second 
assertion of the proposition follows, completing the proof. 

Examples 
(1) Let lTJ = ( 1 ) (3 5) (8 9) (2 4 7 6) and let az = (3) (4 7) (8 1 ) (5 2 6 9) . Then define r by 

r (l)  = 3, r(3) = 4, r (5) = 7, r (8) = 8, etc. Then 

and rat r-1 = az . 
T = (1 3 4 2 5 7 6 9) (8) 

(2) If in the previous example we had reordered az as az = (3)(8 1 ) (4 7) (5 2 6 9) by 
interchanging the two cycles of length 2, then the corresponding r described above is 
defined by r ( l )  = 3, r (3) = 8, r (5) = 1, r (8) = 4, etc. ,  which gives the permutation 
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T = ( 1  3 8 4 2 5) (6 9 7) 

again with rat r-1 = a2 , which shows that there are many elements conjugating lTJ 

into az . 
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(3) If n = 5, the partitions of 5 and corresponding representatives of the conjugacy classes 
(with 1 -cycles not written) are as given in the following table: 

Partition of 5 
1 , 1 , 1 , 1 , 1 
1 ,  1 ,  1 ,  2 
1 ,  1 ,  3 
1 ,  4 
5 
1 ,  2, 2 
2, 3 

Representative of Conjugacy Class 
1 
( 1  2) 
(1 2 3) 
(1 2 3 4) 
(1 2 3 4 5) 
(1 2)(3 4) 
(1 2)(3 4 5) 

Proposition 1 1  and Proposition 6 can be used to exhibit the centralizers of some 
elements in Sn . For example, if a is an m-cycle in Sn , then the number of conjugates 
of a (i.e., the number of m-cycles) is 

n · (n - 1 )  · · · (n - m + 1 ) 
m 

I Sn l By Proposition 6 this is the index of the centralizer of a :  Since I Sn l = n !  
I Cs,(a) I 

we obtain 
ICsJa) l  = m · (n - m) ! .  

The element a certainly commutes with 1 ,  a ,  a2 , • • •  , am-1 • It also commutes with any 
permutation in Sn whose cycles are disjoint from a and there are (n - m) !  permutations 
of this type (the full symmetric group on the numbers not appearing in a). The product 
of elements of these two types already accounts for m · (n - m) !  elements commuting 
with a .  By the order computation above, this is the full centralizer of a in Sn . Explicitly, 

if a is an m-cycle in Sn , then Cs" (a) = {a i r I 0 :5 i :5 m - 1 , r E Sn-m } 

where Sn-m denotes the subgroup of Sn which fixes all integers appearing in the m-cycle 
a (and is the identity subgroup if m = n or m  = n - 1 ). 

For example, the centralizer of a = (1 3 5) in S7 is the subgroup 

{ ( I  3 5)i r I i = 0, 1 or 2, and r fixes 1 , 3 and 5} .  

Note that r E SA where A = {2 , 4 , 6, 7}, so there are 4 !  choices for r and the centralizer 
has order 3 · 4 !  = 72. 

We shall discuss centralizers of other elements of Sn in the next exercises and in 
Chapter 5 .  

We can use this discussion of the conjugacy classes in  Sn to give a combinatorial 
proof of the simplicity of A5 • We first observe that normal subgroups of a group G are 
the union of conjugacy classes of G, i.e., 

if H <::::1 G, then for every conjugacy class K of G either K � H or K n H = 0. 

This is because if x E K n H, then gxg-1 E gHg -1 for all g E G. Since H is normal, 
gHg-1 = H, so that H contains all the conjugates of x ,  i.e., K � H. 

Sec. 4.3 Groups Acti ng on Themselves by Conjugation 1 27 



Theorem 12. As is a simple group. 

Proof" We first work out the conjugacy classes of As and their orders. Proposition 
1 1  does not apply directly since two elements of the same cycle type (which are conjugate 
in Ss) need not be conjugate in As. Exercises 1 9  to 22 analyze the relation of classes 
in Sn to classes in An in detail. 

We have already seen that representatives of the cycle types of even permutations 
can be taken to be 

1 , ( 1  2 3) , ( 1  2 3 4 5) and ( 1 2) (3 4) . 

The centralizers of 3-cycles and 5-cycles in Ss were determined above, and checking 
which of these elements are contained in As we see that 

CAs ( ( 1  2 3)) = ( ( 1  2 3) ) and CAs ( ( 1  2 3 4 5)) = ( ( 1  2 3 4 5) ) . 

These groups have orders 3 and 5 (index 20 and 1 2), respectively, so there are 20 distinct 
conjugates of ( 1  2 3) and 1 2  distinct conjugates of ( 1  2 3 4 5) in As.  Since there are a 
total of twenty 3-cycles in Ss (Exercise 16, Section 1 .3) and all of these lie in As, we 
see that 

all twenty 3-cycles are conjugate in As. 

There are a total of twenty-four 5-cycles in As but only 12  distinct conjugates of the 
5-cycle ( 1  2 3 4 5).  Thus some 5-cycle, a ,  is not conjugate to ( 1  2 3 4 5) in As (in fact, 
( 1  3 5 2  4) is not conjugate in As to ( 1  2 3 4 5) since the method of proof in Proposition 
1 1 shows that any element of Ss conjugating ( 1  2 3 4 5) into ( 1  3 5 2 4) must be an odd 
permutation). As above we see that a also has 1 2  distinct conjugates in As , hence 

the 5-cycles lie in two conjugacy classes in As, each of which has 12 elements. 

Since the 3-cycles and 5-cycles account for all the nonidentity elements of odd order, 
the 15 remaining nonidentity elements of As must have order 2 and therefore have 
cycle type (2,2) . It is easy to see that ( 1  2) (3 4) commutes with ( 1  3) (2 4) but does not 
commute with any element of odd order in As . It follows that I CAs ((12) (34) ) 1  = 4. 
Thus ( 1  2) (3 4) has 1 5  distinct conjugates in As, hence 

all 15  elements of order 2 in As are conjugate to ( 1  2)(3 4) . 

In summary, the conjugacy classes of As have orders 1 ,  1 5, 20, 1 2  and 1 2. 
Now, suppose H were a normal subgroup of As . Then as we observed above, H 

would be the union of conjugacy classes of As.  Then the order of H would be both 
a divisor of 60 (the order of As) and be the sum of some collection of the integers 
{ 1 , 1 2, 12 ,  15 ,  20) (the sizes of the conjugacy classes in As). A quick check shows the 
only possibilities are I H I  = 1 or I H I  = 60, so that As has no proper, nontrivial normal 
subgroups. 

Right Group Actions 

As noted in Section 1 .7, in the definition of an action the group elements appear to the 
left of the set elements and so our notion of an action might more precisely be termed a 
left group action. One can analogously define the notion of a right group action of the 
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group G on the nonempty set A as a map from A x G to A, denoted by a · g for a E A 
and g E G, that satisfies the axioms: 

(1) (a · gt) · g2 = a · (gtg2) for all a E A, and g1 , g2 E G, and 
(2) a · 1 = a for all a E A. 

In  much of the literature on group theory, conjugation is  written as  a right group 
action using the following notation: 

for all g, a E G. 

Similarly, for subsets S of G one defines Sg = g-1 Sg . In this notation the two axioms 
for a right action are verified as follows: 

and 

for all gh g2 , a E G. Thus the two axioms for this right action of a group on itself take 
the form of the familiar "laws of exponentiation." (Note that the integer power an of 
a group element a is easily distinguished from the conjugate ag of a by the nature of 
the exponent: n E Z but g E G.) Because conjugation is so ubiquitous in the theory of 
groups, this notation is a useful and efficient shorthand (as opposed to always writing 
gag-1 or g · a  for action on the left by conjugation). 

For arbitrary group actions it is an easy exercise to check that if we are given a left 
group action of G on A then the map A x G --+ A defined by a ·  g = g-1 · a is a right 
group action. Conversely, given a right group action of G on A we can form a left group 
action by g · a = a ·  g-1 . Call these pairs corresponding group actions. Put another 
way, for corresponding group actions, g acts on the left in the same way that g -I acts on 
the right. This is particularly transparent for the action of conjugation because the "left 
conjugate of a by g," namely gag-1 , is the same group element as the "right conjugate 
of a by g-1 ," namely ag- ' . Thus two elements or subsets of a group are "left conjugate" 
if and only if they are "right conjugate," and so the relation "conjugacy" is the same for 
the left and right corresponding actions. More generally, it is also an exercise (Exercise 
1) to see that for any corresponding left and right actions the orbits are the same. 

We have consistently used left actions since they are compatible with the notation of 
applying functions on the left (i.e., with the notation cp(g) ); in this way left multiplication 
on the left cosets of a subgroup is a left action. Similarly, right multiplication on the 
right cosets of a subgroup is a right action and the associated permutation representation 
cp is a homomorphism provided the function cp : G --+ SA is written on the right as 
(g1g2)cp (and also provided permutations in SA are written on the right as functions 
from A to itself). There are instances where a set admits two actions by a group G: one 
naturally on the left and the other on the right, so that it is useful to be comfortable with 
both types of actions. 
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E X E R C I S E S  

Let G be a group. 

1. Suppose G has a left action on a set A, denoted by g - a for all g E G and a E A. Denote 
the corresponding right action on A by a · g. Prove that the (equivalence) relations � and 
�' defined by 

if and only if a = g · b for some g E G 

and 

a �' b if and only if a = b - g for some g E G 

are the same relation (i.e., a � b if and only if a �' b). 
2. Find all conjugacy classes and their sizes in the following groups: 

(a) Ds (b) Qs (c) A4. 

3. Find all the conjugacy classes and their sizes in the following groups: 
(a) Z2 x S3 (b) S3 x S3 (c) Z3 x A4. 

4. Prove that if S 5; G and g E G then gNG (S)g-1 = NG (gSg-1 ) and gCG (S)g-1 

CG (gSg-1 ) . 

5. If the center of G is of index n, prove that every conjugacy class has at most n elements. 

6. Assume G is a non-abelian group of order 15. Prove that Z(G) = 1 .  Use the fact that 
( g ) � C G (g) for all g E G to show that there is at most one possible class equation for 
G .  [Use Exercise 36, Section 3. 1 .] 

7. For n = 3, 4, 6 and 7 make lists of the partitions of n and give representatives for the 
corresponding conjugacy classes of S, . 

8. Prove that Z(S, ) = l for all n :::: 3 .  
9. Show that ICs" (( 1 2) (3 4) ) 1  = 8 · (n - 4) ! for all n :::: 4. Determine the elements in this 

centralizer explicitly. 

10. Let a be the 5-cycle ( 1 2 3 4 5) in Ss . In each of (a) to (c) find an explicit element -r E Ss 

which accomplishes the specified conjugation: 
(a) -ra -r -1 = a2 

(b) -ra-r-1 = a-1 

(c) -ra-r-1 = a-2 . 

11. In each of (a) - (d) determine whether a1 and a2 are conjugate. If they are, give an explicit 
permutation -r �uch that -ra1 -r- 1 = a2.  
(a) a1 = ( l 2) (3 4 5)  and a2 = (1 2 3) (4 5) 
(b) a1 = ( l 5)(3 7 2) (  lO 6 8 l l ) and a2 = (3 7 5 10) (4 9) ( 1 3  1 1  2) 
(c) a1 = (1 5)(3 7 2) ( 10 6 8 1 1) and a2 = a[ 
(d) a1 = ( 1 3) (2 4 6) and a2 = (3 5)(2 4) (5 6) .  

12. Find a representative for each conjugacy class of elements of order 4 i n  Ss and in S12 · 
13. Find all finite groups which have exactly two conjugacy classes. 

14. In Exercise 1 of Section 2 two labellings of the elements { 1 ,  a, b, c} of the Klein 4-group 
V were chosen to give two versions of the left regular representation of V into S4. Let 
1r1 be the version of regular representation obtained in part (a) of that exercise and let 
1r2 be the version obtained via the labelling in part (b). Let -r = (2 4) . Show that 
-r o 1r1 (g) o -r-1 = n2 (g) for each g E V (i.e., conjugation by -r sends the image of 1r1 to 
the image of n2 elementwise ). 
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15. Find an element of Ss which conjugates the subgroup of Ss obtained in part (a) of Exercise 
3, Section 2 to the subgroup of Ss obtained in part (b) of that same exercise (both of these 
subgroups are isomorphic to Dg). 

16. Find an element of S4 which conjugates the subgroup of S4 obtained in part (a) of Exercise 
5, Section 2 to the subgroup of S4 obtained in part (b) of that same exercise (both of these 
subgroups are isomorphic to Ds). 

17. Let A be a nonempty set and let X be any subset of SA . Let 

F(X) = {a E A I a (a) = a  for all a E X} - the fixed set of X. 

Let M(X) = A - F(X) be the elements which are moved by some element of X. Let 
D = {a E SA I IM(a ) l  < oo}. Prove that D is a normal subgroup of SA . 

18. Let A be a set, let H be a subgroup of SA and let F (H) be the fixed points of H on A as 
defined in the preceding exercise. Prove that if -r E NsA (H) then -r stabilizes the set F(H) 
and its complement A - F(H).  

19. Assume H is a normal subgroup of G, K is  a conjugacy class of G contained in H . and x E K. Prove that K is a union of k conjugacy classes of equal size in H, where 
k = I G : H Cc (x) 1 - Deduce that a conjugacy class in Sn which consists of even permuta
tions is either a single conjugacy class under the action of An or is a union of two classes 
of the same size in An . [Let A = Cc (x) and B = H so A n  B = CH(x).  Draw the lat
tice diagram associated to the Second Isomorphism Theorem and interpret the appropriate 
indices. See also Exercise 9, Section 1 .] 

20. Let a E An. Show that all elements in the conjugacy class of a in Sn (i.e., all elements 
of the same cycle type as a) are conjugate in An if and only if a commutes with an odd 
permutation. [Use the preceding exercise.] 

21. Let K be a conjugacy class in Sn and assur11.e that K � An. Show a E Sn does not 
commute with any odd permutation if and only if the cycle type of a consists of distinct 
odd integers. Deduce that K consists of two conjugacy classes in An if and only if the cycle 
type of an element of K consists of distinct odd integers. [Assume first that a E K does 
not commute with any odd permutation. Observe that a commutes with each individual 
cycle in its cycle decomposition - use this to show that all its cycles must be of odd 
length. If two cycles have the same odd length, k, find a product of k transpositions which 
interchanges them and commutes with a. Conversely, if the cycle type of a consists of 
distinct integers, prove that a commutes only with the group generated by the cycles in its 
cycle decomposition.] 

22. Show that if n is odd then the set of all n-cycles consists of two conjugacy classes of equal 
size in An . 

23. Recall ( cf. Exercise 16, Section 2.4) that a proper subgroup M of G is called maximal if 
whenever M ::=:: H ::=:: G, either H = M or H = G. Prove that if M is a maximal subgroup 
of G then either Nc (M) = M or Nc (M) = G. Deduce that if M is a maximal subgroup of 
G that is not normal in G then the number of nonidentity elements of G that are contained 
in conjugates of M is at most ( IMI  - l ) I G  : MI .  

24. Assume H is a proper subgroup of the finite group G. Prove G =I= U8EcgHg- I , i.e., G is 
not the union of the conjugates of any proper subgroup. [Put H in some maximal subgroup 
and use the preceding exercise.] 

25. Let G = GLz (C) and let H = {( � �) I a, b, c E C, ac =f. 0} . Prove that every element 

of G is conjugate to some element of the subgroup H and deduce that G is the union of 
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conjugates of H.  [Show that every element of GL2 (C) has an eigenvector.] 

26. Let G be a transitive permutation group on the finite set A with I A I > 1 .  Show that there 
is some a E G such that a (a) =/= a  for all a E A (such an element a is called fixed point 
free). 

27. Let g1 . g2 • . . .  , gr be representatives of the conjugacy classes of the finite group G and 
assume these elements pairwise commute. Prove that G is abelian. 

28. Let p and q be primes with p < q. Prove that a non-abelian group G of order pq has a 
nonnormal subgroup of index q, so that there exists an injective homomorphism into Sq . 
Deduce that G is isomorphic to a subgroup of the normalizer in Sq of the cyclic group 
generated by the q-cycle ( 1 2 . . .  q ) . 

29. Let p be a prime and let G be a group of order pa . Prove that G has a subgroup of order 
p/3 , for every {3 with 0 :::; {3 :::; a. [Use Theorem 8 and induction on a .] 

30. If G is a group of odd order, prove for any nonidentity element x E G that x and x -1 are 
not conjugate in G. 

31. Using the usual generators and relations for the dihedral group D2n (cf. Section 1 .2) show 
that for n = 2k an even integer the conjugacy classes in D2n are the following: { 1 }, {rk}, 
{r±1 }, {r±2} ,  . . .  , {r±(k-1) } , {sr2h 1 b = 1, . . . , k} and {sr2h-l  1 b = I , . . . , k}. Give 
the class equation for D2n . 

32. For n = 2k + 1 an odd integer show that the conjugacy classes in �n are { 1}, {r±1 }, 
{r±2}, . . .  , {r±k },  {srh I b = 1 , . . . , n } .  Give the class equation for D2n · 

33. This exercise gives a formula for the size of each conjugacy class in Sn . Let a be a 
permutation in Sn and let m1 . m2 , . . .  , ms be the distinct integers which appear in the 
cycle type of a (including 1-cycles). For each i E { 1 , 2, . . . , s }  assume a has k; cycles of 
length m; (so that 'I:,f=1k;m; = n). Prove that the number of conjugates of a is 

. 
n !  

(k I kl ) (k I k2 ) (k I k, ) . 1 -m1 2 -m2 . . .  s ·ms 

[See Exercises 6 and 7 in Section 1 .3 where this formula was given in some special cases.] 

34. Prove that if p is a prime and P is a subgroup of Sp of order p, then INs/P) I = p(p - 1 ) .  
[Argue that every conjugate of P contains exactly p - 1 p-cycles and use the formula for 
the number of p-cycles to compute the index of NsP (P) in Sp .] 

35. Let p be a prime. Find a formula for the number of conjugacy classes of elements of order 
p in Sn (using the greatest integer function). 

36. Let n : G � Sc be the left regular representation afforded by the action of G on itself by 
left multiplication. For each g E G denote the permutation rr(g) by ag , so that ag (x) = gx 
for all x E G. Let ). : G � Sc be the permutation representation afforded by the 
corresponding right action of G on itself, and for each h E G denote the permutation A.(h) 
by rh . Thus rh (x) = xh- 1 for all x E G (A. is called the right regular representation of 
G). 
(a) Prove that ag and rh commute for all g ,  h E G. (Thus the centralizer in Sc of rr(G) 

contains the subgroup A.( G) , which is isomorphic to G). 
(b) Prove that a g = rg if and only if g is an element of order I or 2 in the center of G. 
(c) Prove that ag = rh if and only if g and h lie in the center of G. Deduce that 

n (G) n A.( G) = rr(Z(G)) = A.(Z(G)) . 
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4.4 AUTOMORPHISMS 

Definition. Let G be a group. An isomorphism from G onto itself is called an 
automorphism of G.  The set of all automorphisms of G is denoted by Aut( G) .  

We leave as an exercise the simple verification that Aut( G) is a group under compo
sition of automorphisms, the automorphism group of G (composition of automorphisms 
is defined since the domain and range of each automorphism is the same). Notice that 
automorphisms of a group G are, in particular, permutations of the set G so Aut( G) is 
a subgroup of SG . 

One of the most important examples of an automorphism of a group G is provided 
by conjugation by a fixed element in G. The next result discusses this in a slightly more 
general context. 

· 

Proposition 13. Let H be a normal subgroup of the group G. Then G acts by con
jugation on H as automorphisms of H. More specifically, the action of G on H by 
conjugation is defined for each g E G by 

h 1-+ ghg-1 for each h E H. 
For each g E G, conjugation by g is an automorphism of H. The permutation rep
resentation afforded by this action is a homomorphism of G into Aut( H) with kernel 
Ca(H) . In particular, G / Ca(H) is isomorphic to a subgroup of Aut( H). 

Proof' ( cf. Exercise 17, Section 1.  7) Let f/Jg be conjugation by g. Note that because 
g normalizes H, (/Jg maps H to itself. Since we have already seen that conjugation 
defines an action, it follows that f/Jt = 1 (the identity map on H) and f/Ja o f/Jb = f/Jab 
for all a, b E G. Thus each f/Jg gives a bijection from H to itself since it has a 2-sided 
inverse f/Jg-I . Each f/Jg is a homomorphism from H to H because 

(/Jg (hk) = g(hk)g- ! = gh(gg-1 )kg-! = (ghg-1 ) (gkg-1 ) = f/Jg (h)({Jg (k) 
for all h ,  k E H. This proves that conjugation by any fixed element of G defines an 
automorphism of H. 

By the preceding remark, the permutation representation 1/1 : G --+  SH defined by 
1/J(g) = f/Jg (which we have already proved is a homomorphism) has image contained 
in the subgroup Aut( H) of S II · Finally, 

ker 1/1 = {g E G I f/Jg = id} 

= {g E G I ghg-1 = h for all h E H} 

= CG (H). 
The First Isomorphism Theorem implies the final statement of the proposition. 

Proposition 13  shows that a group acts by conjugation on a normal subgroup as 
structure preserving permutations, i.e., as automorphisms. In particular, this action 
must send subgroups to subgroups, elements of order n to elements of order n, etc. Two 
specific applications of this proposition are described in the next two corollaries. 
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Corollary 14. If K is any subgroup of the group G and g E G, then K � g Kg-1 • 
Conjugate elements and conjugate subgroups have the same order. 

Proof" Letting G = H in the proposition shows that conjugation by g E G is an 
automorphism of G,  from which the corollary follows. 

Corollary 15. For any subgroup H of a group G, the quotient group Nc (H)/Cc (H) 
is isomorphic to a subgroup of Aut(H).  In particular, G/Z(G) is isomorphic to a 
subgroup of Aut( G).  

Proof· Since H is a normal subgroup of the group N c (H),  Proposition 13  (applied 
with Nc (H) playing the role of G) implies the first assertion. The second assertion is 
the special case when H = G, in which case Nc(G) = G and Cc (G) = Z(G). 

Definition. Let G be a group and let g E G. Conjugation by g is called an inner 
automorphism of G and the subgroup of Aut( G) consisting of all inner automorphisms 
is denoted by Inn( G).  

Note that the collection of inner automorphisms of G is in fact a subgroup of Aut( G) 
and that by Corollary 15, Inn( G) � G/Z(G). Note also that if H is a normal subgroup 
of G, conjugation by an element of G when restricted to H is an automorphism of H 
but need not be an inner automorphism of H (as we shall see). 

Examples 

(1) A group G is abelian if and only if every inner automorphism is trivial. If H is an 
abelian normal subgroup of G and H is not contained in Z(G), then there is some 
g E G such that conjugation by g restricted to H is not an inner automorphism of 
H. An explicit example of this is G = A4, H is the Klein 4-group in G and g is any 
3-cycle. 

(2) Since Z(Qs)  = ( - 1 } we have lnn( Qs) � V4. 
(3) Since Z(Ds) = ( r2

} we have lnn(Ds) � V4. 
(4) Since for all n 2':: 3, Z(Sn )  = 1 we have lnn(Sn ) � Sn . 

Corollary 1 5  shows that any information we have about the automorphism group 
of a subgroup H of a group G translates into information about Nc (H)/Cc (H).  For 
example, if H � Z2, then since H has unique elements of orders 1 and 2, Corollary 14 
forces Aut(H) = 1. Thus if H � Z2, Nc (H) = Cc (H); if in addition H is a normal 
subgroup of G,  then H :=: Z(G) (cf. Exercise 10, Section 2.2). 

Although the preceding example was fairly trivial, it illustrates that the action of 
G by conjugation on a normal subgroup H can be restricted by knowledge of the 
automorphism group of H. This in tum can be used to investigate the structure of G 
and will lead to some classification theorems when we consider semidirect products in 
Section 5.5. 

A notion which will be used in later sections most naturally warrants introduction 
here: 
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Definition. A subgroup H of a group G is called characteristic in G, denoted H char G, 
if every automorphism of G maps H to itself, i.e., u (H) = H for all u E Aut( G). 

Results concerning characteristic subgroups which we shall use later (and whose 
proofs are relegated to the exercises) are 

(1) characteristic subgroups are normal, 
(2) if H is the unique subgroup of G of a given order, then H is characteristic in G, 

and 
(3) if K char H and H � G, then K � G (so although "normality" is not a transitive 

property (i.e., a normal subgroup of a normal subgroup need not be normal), a 
characteristic subgroup of a normal subgroup is normal). 

Thus we may think of characteristic subgroups as "strongly normal" subgroups. For 
example, propeny (2) and Theorem 2.7 imply that every subgroup of a cyclic group is 
characteristic. 

We close this section with some results on automorphism groups of specific groups. 

Proposition 16. The automorphism group of the cyclic group of order n is isomorphic 
to (ZjnZ)x ,  an abelian group of order q?(n) (where 9? is Euler's function). 

Proof" Letx be a generator ofthe cyclic group Zn . lf 'ljr E Aut(Zn) ,  then 1/r (x) = xa 

for some a E Z and the integer a uniquely determines 1/r . Denote this automorphism 
by Vra · As usual, since lx l = n, the integer a is only defined mod n. Since 1/ra is an 
automorphism, x and xa must have the same order, hence (a , n) = 1 .  Furthermore, for 
every a relatively prime to n, the map x 1-+ xa is an automorphism of Zn . Hence we 
have a surjective map 

\11 : Aut(Zn) � (ZjnZ) x 

Vra 1-+ a (mod n) . 

The map \11 is a homomorphism because 

Vra o 1/rb (x) = 1/ra (Xb) = (xb)a = Xab = Vrab (X) 

for all l/ra , Vrb E Aut(Zn) ,  so that 

\11 (1/ra o 1/rb) = \11 (1/rab ) = ab (mod n) = \11 (1/ra) \11 (1/rb) . 

Finally, \11 is clearly injective, hence is an isomorphism. 

A complete description of the isomorphism type of Aut(Zn) is given at the end of 
Section 9.5. 

Example 

Assume G is a group of order pq, where p and q are primes (not necessarily distinct) with 
p � q. If p f q - 1 ,  we prove G is abelian. 

If Z(G) =f. 1 ,  Lagrange's Theorem forces G/Z(G) to be cyclic, hence G is abelian by 
Exercise 36, Section 3.1 . Hence we may assume Z(G) = 1 . 
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If every nonidentity element of G has order p, then the centralizer of every nonidentity 
element has index q, so the class equation for G reads 

pq = I  + kq . 
This is impossible since q divides pq and kq but not I .  Thus G contains an element, x, of 
order q.  

Let H = (x ) . Since H has index p and p is the smallest prime dividing IGI ,  the 
subgroup H is normal in G by Corollary 5. Since Z(G) = I ,  we must have Cc (H) = H. 
Thus G I H = N c (H) I Cc (H) is a group of order p isomorphic to a subgroup of Aut(H) 
by Corollary I5 .  But by Proposition I6, Aut(H) has order q;(q) = q - I ,  which by 
Lagrange's Theorem would imply p I q - I, contrary to assumption. This shows that G 
must be abelian. 

One can check that every group of order pq, where p and q are distinct primes 
with p < q and p f q - 1 is cyclic (see the exercises). This is the first instance where 
there is a unique isomorphism type of group whose order is composite. For instance, 
every group of order 15  is cyclic. 

The next proposition summarizes some results on automorphism groups of known 
groups and will be proved later. Part 3 of this proposition illustrates how the theory of 
vector spaces comes into play in group theory. 

Proposition 17. 
(1) If p is an odd prime and n E z+, then the automorphism group of the cyclic 

group of order p is cyclic of order p - 1 .  More generally, the automorphism 
group of the cyclic group of order pn is cyclic of order pn-l (p- 1) ( cf. Corollary 
20, Section 9.5). 

(2) For all n � 3 the automorphism group of the cyclic group of order 2n is iso
morphic to z2 X Z2n-2 . and in particular is not cyclic but has a cyclic subgroup 
of index 2 (cf. Corollary 20, Section 9.5). 

(3) Let p be a prime and let V be an abelian group (written additively) with the 
property that pv = 0 for all v E V .  If I V  I = pn , then V is an n-dimensional 
vector space over the field IF P = Z/ pZ. The automorphisms of V are precisely 
the nonsingular linear transformations from V to itself, that is 

Aut(V) � GL(V) � GLn (IFp) .  
In particular, the order of Aut(V) is  as given in Section 1 .4 (cf. the examples in 
Sections 10.2 and 1 1 . 1). 

(4) For all n I 6 we have Aut(Sn) = Inn(Sn) � Sn (cf. Exercise 18). For n = 6 we 
have IAut(S6) : Inn(S6) I = 2 (cf. the following Exercise 19 and also Exercise 
10 in Section 6.3). 

(5) Aut(Ds) � Ds and Aut( Q8) � S4 (cf. the following Exercises 4 and 5 and also 
Exercise 9 in Section 6.3). 

The group V described in Part 3 of the proposition is called the elementary abelian 
group of order pn (we shall see in Chapter 5 that it is uniquely determined up to 
isomorphism by p and n ) . The Klein 4-group, V4, is the elementary abelian group of 
order 4. This proposition asserts that 

Aut(V4) � GL2(IF2). 
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By the exercises in Section 1 .4, the latter group has order 6. But Aut(V4) permutes 
the 3 nonidentity elements of V4, and this action of Aut(V4) on V4 - { 1 }  gives an 
injective permutation representation of Aut(V4) into S3 • By order considerations, the 
homomorphism is onto, so 

Aut(V4) � GL2 (lF2) � S3 . 

Note that V4 is abelian, so Inn(V4) = 1 .  
For any prime p ,  the elementary abelian group of order p2 is Zp x Zp . Its auto

morphism group, GL2(1Fp) , has order p(p - 1)2 (p + 1 ) .  Thus Corollary 9 implies that 
for p a prime 

if I P I = p2• IAut(P) I = p(p - 1) or p(p - 1)2 (p + 1) 
according to whether P is cyclic or elementary abelian, respectively. 

Example 

Suppose G is a group of order 45 = 325 with a normal subgroup P of order 32. We show 
that G is necessarily abelian. 

The quotient G/CG (P) is isomorphic to a subgroup of Aut(P) by Corollary 15, and 
Aut(P) has order 6 or 48 (according to whether P is cyclic or elementary abelian, respec
tively) by the preceding paragraph. On the other hand, since the order of P is the square 
of a prime, P is an abelian group, hence P :::; CG (P). It follows that ICG (P) I is divisible 
by 9, which implies IG/CG (P) I is 1 or 5. Together these imply IG/CG (P)I  = 1 ,  i.e., 
CG (P) = G and P :::; Z(G). Since then G/Z(G) is cyclic, G must be an abelian group. 

E X E R C I S E S  

Let G be a group. 

1. If a E Aut( G) and cp8 is conjugation by g prove acp8a-1 
= fPa(g) · Deduce that Inn( G) .:::) 

Aut( G). (The group Aut( G) /Inn( G) is called the outer automorphism group of G.) 

2. Prove that if G is an abelian group of order pq, where p and q are distinct primes, then G 
is cyclic. [Use Cauchy's Theorem to produce elements of order p and q and consider the 
order of their product.] 

3. Prove that under any automorphism of Ds , r has at most 2 possible images and s has at 
most 4 possible images (r and s are the usual generators - cf. Section 1 .2). Deduce that 
IAut(Ds) l :::; 8. 

4. Use arguments similar to those in the preceding exercise to show IAut( Qs)l  :::; 24. 

5. Use the fact that Ds .:::) Dt6 to prove that Aut(Ds) ;:: Ds . 

6. Prove that characteristic subgroups are nofi11al. Give an example of a normal subgroup 
that is not characteristic. 

7. If H is the unique subgroup of a given order in a group G prove H is characteristic in G.  

8. Let G be a group with subgroups H and K with H :::; K. 
(a) Prove that if H is characteristic in K and K is normal in G then H is normal in G.  
(b) Prove that if  H is characteristic in K and K is characteristic in G then H is charac

teristic in G. Use this to prove that the Klein 4-group V4 is characteristic in S4. 
(c) Give an example to show that if H is normal in K  and K is characteristic in G then 

H need not be normal in G.  

Sec. 4.4 Automorphisms 1 37 



9. If r, s are the usual generators for the dihedral group D2n .  use the preceding two exercises 
to deduce that every subgroup of ( r ) is normal in D2n . 

10. Let G be a group, let A be an abelian normal subgroup of G, and write G = G I A. Show 
that G acts (on the left) by conjugation on A by g-a = gag-1 , where g is any representative 
of the coset g (in particular, show that this action is well defined). Give an explicit example 
to show that this action is not well defined if A is non-abelian. 

11. If p is a prime and P is a subgroup of Sp of order p, prove NsP (P)/Csp (P) � Aut(P) . 
[Use Exercise 34, Section 3.] 

12. Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 in G 
then H � Z(G). 

13. Let G be a group of order 203. Prove that if H is a normal subgroup of order 7 in G then 
H � Z(G). Deduce that G is abelian in this case. 

14. Let G be a group of order 1575. Prove that if H is a normal subgroup of order 9 in G then 
H � Z(G) . 

15. Prove that each of the following (multiplicative) groups is cyclic: (Z/5Z) x ,  (Z/9Z) x and 
(Z/18Z) x .  

16. Prove that (Z/24Z) x is an elementary abelian group of order 8. (yVe shall see later that 
(Z/ nZ) x is an elementary abelian group if and only if n I 24.) 

17. Let G = ( x ) be a cyclic group of order n. For n = 2, 3 ,  4, 5, 6 write out the elements 
of Aut( G) explicitly (by Proposition 16 above we know Aut( G) � (ZjnZ) x ,  so for each 
element a E (Z/ nZ) x ,  write out explicitly what the automorphism 1/f a does to the elements 
{ 1 , x, x2,  . . .  , xn- l }  of G) . 

18. This exercise shows that for n :f= 6 every automorphism of Sn is inner. Fix an integer n ?:: 2 
with n :f= 6. 
(a) Prove that the automorphism group of a group G permutes the conjugacy classes of 

G, i.e., for each a E Aut( G) and each conjugacy class K of G the set a (K) is also a 
conjugacy class of G. 

(b) Let K be the conjugacy class of transpositions in Sn and let K' be the conjugacy class 
of any element of order 2 in Sn that is not a transposition. Prove that IK I :f= IK' I 
Deduce that any automorphism of Sn sends transpositions to transpositions.  [See 
Exercise 33 in Section 3.] 

(c) Prove that for each a E Aut(Sn) 

a : (1 2) � (a b2) ,  a : ( 1  3)  � (a  b3) ,  a : (1 n) � (a  bn) 

for some distinct integers a ,  b2 , b3 , . . .  , bn E { 1 ,  2, . . . , n}. 
(d) Show that ( 1  2), ( 1  3) ,  . . .  , ( 1  n) generate Sn and deduce that any automorphism 

of Sn is uniquely determined by its action on these elements. Use (c) to show that Sn 
has at most n !  automorphisms and conclude that Aut(Sn) = Inn(Sn)  for n :f= 6. 

19. This exercise shows that 1Aut(S6) : Inn(S6) 1  � 2 (Exercise 10 in Section 6.3 shows that 
equality holds by exhibiting an automorphism of S6 that is not inner). 
(a) Let K be the conjugacy class of transpositions in S6 and let K' be the conjugacy class 

of any element of order 2 in S6 that is not a transposition. Prove that I K 1 :f= I K' l unless 
K' is the conjugacy class of products of three disjoint transpositions. Deduce that 
Aut(S6) has a subgroup of index at most 2 which sends transpositions to transpositions. 

(b) Prove that 1Aut(S6) : Inn(S6) 1 � 2. [Follow the same steps as in (c) and (d) of 
the preceding exercise to show that any automorphism that sends transpositions to 
transpositions is inner.] 
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The next exercise introduces a subgroup, J(P),  which (like the center of P) is defined for an 
arbitrary finite group P (although in most applications P is a group whose order is a power of 
a prime). This subgroup was defined by J. Thompson in I964 and it now plays a pivotal role 
in the study of finite groups, in particular, in the classification of finite simple groups. 

20. For any finite group P let d(P) be the minimum number of generators of P (so, for 
example, d (P) = I  if and only if P is a nontrivial cyclic group and d(Qs) = 2). Let m(P) 
be the maximum of the integers d(A) as  A runs over all abelian subgroups of P (so, for 
example, m( Qs) = 1 and m(Ds) = 2). Define 

J (P) = ( A  I A is an abelian subgroup of P with d(A) = m(P) ) .  

(J(P) is called the Thompson subgroup of P.) 
(a) Prove that J (P) is a characteristic subgroup of P. 
(b) For each of the following groups P list all abelian subgroups A of P that satisfy 

d(A) = m(P):  Qs, Ds, D16 and QD16 (where Q D16 is the quasidihedral group 
of order I6  defined in Exercise I I  of Section 2.5). [Use the lattices of subgroups for 
these groups in Section 2.5 .] 

(c) Show that J ( Qs) = Qs, J(Ds) = Ds, J (DI6) = D16 and J(QDI6) is a dihedral 
subgroup of order 8 in QDI6 · 

(d) Prove that if Q ::;  P and J(P) is a subgroup of Q, then J(P) = J (Q).  Deduce that if 
P is a subgroup (not necessarily normal) of the finite group G and J (P) is contained 
in some subgroup Q of P such that Q ::)  G, then J (P) ::) G. 

4.5 SYLOW'S TH EOREM 

In this section we prove a partial converse to Lagrange's Theorem and derive numerous 
consequences, some of which will lead to classification theorems in the next chapter. 

Definition. Let G be a group and let p be a prime. 

(1) A group of order pa for some a :::: 1 is called a p-group. Subgroups of G which 
are p-groups are called p-subgroups. 

(2) If G is a group of order pam,  where p f m, then a subgroup of order pa is called 
a Sylow p-subgroup of G. 

(3) The set of Sylow p-subgroups of G will be denoted by Sylp (G) and the number 
of Sylow p-subgroups of G will be denoted by np(G) (or just np when G is 
clear from the context). 

Theorem 18. (Sylow 's Theorem) Let G be a group of order pam, where p is a prime 
not dividing m.  

(1) Sylow p-subgroups of G exist, i.e.,  Sylp(G) f= 0. 
(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there 

exists g E G such that Q � g Pg-1 , i.e., Q is contained in some conjugate of 
P.  In particular, any two Sylow p-subgroups of G are conjugate in G.  

(3) The number of Sylow p-subgroups of G i s  of the fonn 1 + kp, i.e. , 

np = 1 (mod p) . 
Further, n P is the index in G of the nonnalizer N c (  P) for any Sylow p-subgroup 
P, hence np divides m. 
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We first prove the following lemma: 

Lemma 19. Let P E Sylp (G). If Q is any p-subgroup of G, then QnNc (P) = Q n P. 

Proof" Let H = Nc(P) n Q.  Since P � Nc (P) it is clear that P n Q � H, so 
we must prove the reverse inclusion. Since by definition H � Q, this is equivalent to 
showing H � P .  We do this by demonstrating that PH is a p-subgroup of G containing 
both P and H; but P is a p-subgroup of G of largest possible order, so we must have 
P H  = P, i.e., H � P. 

Since H ::; Nc(P), by Corollary 1 5  in Section 3.2, PH is a subgroup. By Propo
sition 13  in the same section 

I P H I = 
I P I I H I 

. ! P n H ! 
All the numbers in the above quotient are powers of p, so PH is a p-group. Moreover, 
P is a subgroup of PH so the order of PH is divisible by pa , the largest power of 
p which divides I G I .  These two facts force I P  H I = pa = ! P l . This in tum implies 
P = PH and H � P .  This establishes the lemma. 

Proof of Sylow 's Theorem ( 1 )  Proceed by induction on I G I .  If I G I  = 1 ,  there is nothing 
to prove. Assume inductively the existence of Sylow p-subgroups for all groups of 
order less than I G 1 -

If p divides I Z(G) ! ,  then by Cauchy's Theorem for abelian groups (Proposition 2 1 ,  
Section 3 .4) Z(G) has a subgroup, N, of order p.  Let G = GjN, so that I G I  = pa-lm.  
By induction, G has a subgroup P of order pa- l . I f  we let P be the subgroup of G 
containing N such that PfN = P then I P I = I P/N I · !N I  = pa and P is a Sylow 
p-subgroup of G. We are reduced to the case when p does not divide 1 Z (G) j .  

Let g1 , g2 , . . .  , g, be representatives of the distinct non-central conjugacy classes 
of G. The class equation for G is 

r 

I G I  = IZ(G) I + L I G  : Cc(g; ) l .  
i=l 

If p I I G  : Cc(g; ) l for all i ,  then since p I I G I ,  we would also have p I I Z(G) I ,  
a contradiction. Thus for some i ,  p does not divide I G  : Cc(g; ) l .  For this i let 
H = Cc (g; ) so that 

! H I =  pak , where p f k. 
Since g; rj. Z(G), ! H I  < I G I .  By induction, H has a Sylow p-subgroup, P, which of 
course is also a subgroup of G. Since I P I = pa , P is a Sylow p-subgroup of G.  This 
completes the induction and establishes ( 1 ). 

Before proving (2) and (3) we make some calculations. By ( 1 )  there exists a Sylow 
p-subgroup, P, of G. Let 

{P. ,  P2 , . . .  , Pr } = S 
be the set of all conjugates of P (i.e., S = {gPg-1 1 g E G}) and let Q be any p
subgroup of G. By definition of S, G, hence also Q, acts by conjugation on S. Write 
S as a disjoint union of orbits under this action by Q:  

S = 01 U 02 U · · . U Os 
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where r = I Ot l + · · · + I Os 1 - Keep in mind that r does not depend on Q but the number 
of Q-orbits s does (note that by definition, G has only one orbit on S but a subgroup Q of 
G may have more than one orbit). Renumber the elements of S if necessary so that the 
first s elements of S are representatives of the Q-orbits: P; E 0; ,  1 � i � s .  It follows 
from Proposition 2 that I Od = I Q : NQ (P; ) I . By definition, NQ (P; )  = Nc (P; )  n Q 
and by Lemma 19, Nc (P; )  n Q = P; n Q. Combining these two facts gives 

1 0d = I Q :  P; n Q I , 1 � i � s .  (4. 1 )  

We are now in a position to prove that r = 1 (mod p). Since Q was arbitrary we 
may take Q = Pt above, so that ( 1 )  gives 

Now, for all i > 1 ,  Pt =f. P; , so Pt n P; < Pt . By ( 1 )  

I Od = I Pt : Pt n Pd > 1 ,  2 � i � s . 

Since Pt is a p-group, I Pt : Pt n P; I must be a power of p, so that 

p I I Od . 2 � i � s. 

Thus 

r = l Ot i + ( 1 02 1  + . . . + I Os D = 1 (mod p) . 

We now prove parts (2) and (3). Let Q be any p-subgroup of G. Suppose Q is 
not contained in P; for any i E { 1 ,  2 • . . .  , r} (i.e., Q 1: g Pg-t for any g E G). In this 
situation, Q n P; < Q for all i ,  so by ( 1 )  

- --

I Od = I Q :  Q n P; 1 > 1 , 

Thus p I I O; I for all i ,  so p divides lOt i + . . .  + l Os I = r .  This contradicts the fact that 
r = 1 (mod p) (remember, r does not depend on the choice of Q). This contradiction 
proves Q � gPg-1 for some g E G. 

To see that all Sylow p-subgroups of G are conjugate, let Q be any Sylow p
subgroup of G. By the preceding argument, Q � gPg-t 

for some g E G. Since 
lg Pg- t l = I Q l  = pa , we must have g Pg- t = Q. This establishes part (2) of the 
theorem. In particular, S = Sylp (G) since every Sylow p-subgroup of G is conjugate 
to P, and so n P = r = 1 (mod p ), which is the first part of (3). 

Finally, since all Sylow p-subgroups are conjugate, Proposition 6 shows that 

np = I G : Nc (P) I for any P E Sylp (G) , 

completing the proof of Sylow's Theorem. 

Note that the conjugacy part of Sylow's Theorem together with Corollary 14 shows 
that any two Sylow p-subgroups of a group (for the same prime p) are isomorphic. 
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Corollary 20. Let P be a Sylow p-subgroup of G.  Then the following are equivalent: 
(1) P is the unique Sylow p-subgroup of G, i.e., np = 1 
(2) P is normal in G 
(3) P is characteristic in G 
(4) All subgroups generated by elements of p-power order are p-groups, i.e., if X 

is any subset of G such that jx I is a power of p for all x E X, then { X ) is a 
p-group. 

Proof" lf (l) holds, then gPg-1 = P for all g E G since gPg-1 E Sylp (G), i.e. , P 
is normal in G.  Hence (l ) implies (2). Conversely, if F � G and Q E Sylp (G), then by 
Sylow's Theorem there exists g E G such that Q = gPg-1 = P. Thus Sylp (G) = {P}  
and (2) implies ( 1) .  

Since characteristic subgroups are normal, (3) implies (2). Conversely, if P � G, 
we just proved P is the unique subgroup of G of order pa , hence P char G.  Thus (2) 
and (3) are equivalent. 

Finally, assume ( 1 )  holds and suppose X is a subset of G such that l x l  is a power 
of p for all x E X. By the conjugacy part of Sylow's Theorem, for each x E X there 
is some g E G such that x E g P g-1  = P.  Thus X s; P, and so ( X ) ::=: P, and ( X ) 
is a p-group. Conversely, if (4) holds, let X be the union of all Sylow p-subgroups of 
G .  If P is any Sylow p-subgroup, P is a subgroup of the p-group ( X ) . Since P is a 
p-subgroup of G of maximal order, we must have P = ( X ) , so ( 1 ) holds. 

Examples 

Let G be a finite group and let p be a prime. 
(1) If p does not divide the order of G, the Sylow p-subgroup of G is the trivial group 

(and all pans of Sylow's Theorem hold trivially). If IG I  = pa , G is the unique Sylow 
p-subgroup of G. 

(2) A finite abelian group has a unique Sylow p-subgroup for each prime p.  This subgroup 
consists of all elements x whose order is a power of p. This is sometimes called the 
p-primary component of the abelian group. 

(3) S3 has three Sylow 2-subgroups: { ( 1 2) }, { (2 3) } and { ( 1 3) } .  It has a unique (hence 
normal) Sylow 3-subgroup: { ( 1 2 3) } = A3 . Note that 3 = 1 (mod 2) . 

(4) A4 has a unique Sylow 2-subgroup: { ( 1 2) (3 4) , (1 3) (2 4) } � V4. It has four Sylow 
3-subgroups: { ( 1 2 3) ) ,  { ( 1 2 4) } , { ( 1 3 4) }  and { (2 3 4) } .  Note that 4 = 1 (mod 3).  

(5) S4 has n2 = 3 and n3 = 4. Since S4 contains a subgroup isomorphic to Ds, every 
Sylow 2-subgroup of S4 is isomorphic to Ds. 

Applications of Sylow's Theorem 

We now give some applications of Sylow's Theorem. Most of the examples use Sylow's 
Theorem to prove that a group of a particular order is not simple. After discussing 
methods of constructing larger groups from smaller ones (for example, the formation 
of semi direct products) we shaH be able to use these results to classify groups of some 
specific orders n (as we already did for n = 15). 

Since Sylow's Theorem ensures the existence of p-subgroups of a finite group, it 
is worthwhile to study groups of prime power order more closely. This will be done in 
Chapter 6 and many more applications of Sylow's Theorem will be discussed there. 
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For groups of small order, the congruence condition of Sylow's Theorem alone 
is often sufficient to force the existence of a nonnal subgroup. The first step in any 
numerical application of Sylow's Theorem is to factor the group order into prime powers. 
The largest prime divisors of the group order tend to give the fewest possible values for 
n P (for example, the congruence condition on n2 gives no restriction whatsoever), which 
limits the structure of the group G .  In the following examples we shall see situations 
where Sylow's Theorem alone does not force the existence of a normal subgroup, 
however some additional argument (often involving studying the elements of order p 
for a number of different primes p) proves the existence of a normal Sylow subgroup. 

Example: (Groups of order pq, p and q primes with p < q) 
Suppose IG I = pq for primes p and q with p < q.  Let P E Sylp (G) and let Q E Sylq (G). 
We show that Q is normal in G and if P is also normal in G, then G is cyclic. 

Now the three conditions: nq = 1 + kq for some k ::: 0, nq divides p and p < q, 
together force k = 0. Since nq = 1 ,  Q '::! G. 

Since np divides the prime q,  the only possibilities are np = 1 or q .  In particular, if 
p f q - I ,  (that is,  if q ¢ 1 (mod p)), then np cannot equal q, so P '::! G. 

Let P = ( x ) and Q = ( y ) . If P '::! G, then since GfCc (P) is isomorphic to a 
subgroup of Aut(Zp) and the latter group has order p - 1 ,  Lagrange's Theorem together 
with the observation that neither p nor q can divide p - 1 implies that G = Cc (P).  In 
this case x E P .:::; Z(G) so .x and y commute. (Alternatively, this follows immediately 
from Exercise 42 of Section 3 . 1 .) This means lxy l  = pq (cf. the exercises in Section 2.3), 
hence in this case G is cyclic: G � Zpq · 

If p I q - 1 ,  we shall see in Chapter 5 that there is a unique non-abelian group of order 
pq (in which, necessarily, np = q) .  We can prove the existence of this group now. Let Q be 
a Sylow q-subgroup of the symmetric group of degree q, Sq . By Exercise 34 in Section 3, 

INsq (Q) I = q(q - 1) . By assumption, p I  q - 1 so by Cauchy's Theorem Nsq (Q) has a 
subgroup, P, of order p. By Corollary 15 in Section 3.2, P Q is a group of order pq. Since 
Csq ( Q) = Q (Example 2, Section 3), P Q  is a non-abelian group. The essential ingredient 
in the uniqueness proof of P Q is Theorem 17 on the cyclicity of Aut(Zq ) . 

Example: (Groups of order 30) 

Let G be a group of order 30. We show that G has a normal subgroup isomorphic to 
Z1s - We shall use this information to classify groups of order 30 in the next chapter. Note 
that any subgroup of order 15 is necessarily normal (since it is of index 2) and cyclic 
(by the preceding result) so it is only necessary to show there exists a subgroup of order 
15 .  The quickest way of doing this is to quote Exercise 1 3  in Section 2. We give an 
alternate argument which illustrates how Sylow's Theorem can be used in conjunction 
with a counting of elements of prime order to produce a normal subgroup. 

Let P E Syls (G) and let Q E Syl3 (G) . If either P or Q is normal in G, by Corollary 
15, Chapter 3, PQ is a group of order 15 .  Note also that if either P or Q is normal, then 
both P and Q are characteristic subgroups of P Q, and since P Q  '::! G, both P and Q are 
normal in G (Exercise 8(a), Section 4). Assume therefore that neither Sylow subgroup is 
normal. The only possibilities by Part 3 of Sylow's Theorem are ns = 6 and n3 = 10. 
Each element of order 5 lies in a Sylow 5-subgroup, each Sylow 5-subgroup contains 4 
nonidentity elements and, by Lagrange's Theorem, distinct Sylow 5-subgroups intersect 
in the identity. Thus the number of elements of order 5 in G is the number of nonidentity 
elements in one Sylow 5-subgroup times the number of Sylow 5-subgroups. This would 
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be 4 · 6 = 24 elements of order 5. By similar reasoning, the number of elements of order 3 
would be 2 · 10 = 20. This is absurd since a group of order 30 cannot contain 24 + 20 = 44 
distinct elements. One of P or Q (hence both) must be normal in G. 

This sort of counting technique is frequently useful (cf. also Section 6.2) and works 
particularly well when the Sylow p-subgroups have order p (as in this example), since then 
the intersection of two distinct Sylow p-subgroups must be the identity. If the order of the 
Sylow p-subgroup is pa. with a :::: 2, greater care is required in counting elements, since 
in this case distinct Sylow p-subgroups may have many more elements in common, i.e., 
the intersection may be nontrivial. 

Example: (Groups of order 12) 

Let G be a group of order 12. We show that either G has a normal Sylow 3-subgroup or 
G � A4 (in the latter case G has a normal Sylow 2-subgroup). We shall use this information 
to classify groups of order 12 in the next chapter. 

Suppose n3 # 1 and let P E Syl3 (G).  Since n3 j 4 and n3 = 1 (mod 3), it follows that 
n3 = 4. Since distinct Sylow 3-subgroups intersect in the identity and each contains two 
elements oforder 3,  G contains 2-4 = 8 elements oforder 3.  Since IG : NG (P) I = n3 = 4, 
NG (P) = P .  Now G acts by conjugation on its four Sylow 3-subgroups, so this action 
affords a permutation representation 

(note that we could also act by left multiplication on the left cosets of P and use Theorem 3). 
The kernel K of this action is the subgroup of G which normalizes all Sylow 3-subgroups 
of G .  In particular, K ::: NG (P) = P. Since P is not normal in G by assumption, K = 1,  
i.e., ({J is injective and 

Since G contains 8 elements of order 3 and there are precisely 8 elements of order 3 in 
S4, all contained in A4, it follows that f/J( G) intersects A4 in a subgroup of order at least 8. 
Since both groups have order 12 it follows that f/J(G) = A4,  so that G � A4. 

Note that A4 does indeed have 4 Sylow 3-subgroups (see Example 4 following Corol
lary 20), so that such a group G does exist. Also, let V be a Sylow 2-subgroup of A4. 
Since IV I = 4, it  contains all of the remaining elements of A4. In particular, there cannot 
be another Sylow 2-subgroup. Thus n2 (A4) = 1 ,  i.e., V � A4 (which one can also see 
directly because V is the identity together with the three elements of � which are products 
of two disjoint transpositions, that is, V is a union of conjugacy classes). 

Example: (Groups of order p2q, p and q distinct primes) 

Let G be a group of order p2q .  We show that G has a normal Sylow subgroup (for either 
p or q). We shall use this information to classify some groups of this order in the next 
chapter (cf. Exercises 8 to 12 of Section 5.5). Let P E Sylp (G) and let Q E Sylq (G) . 

Consider first when p > q. Since np I q and np = 1 + kp, we must have np = 1 .  
Thus P :'Sl G. 

Consider now the case p < q .  If  nq = 1 ,  Q is normal in  G .  Assume therefore that 

nq > 1 ,  i .e., nq = 1 + tq , for some t > 0. Now nq divides p2 so nq = p or p2 . Since 
q > p we cannot have nq = p, hence nq = p2• Thus 

tq = p
2 

- 1 = (p - 1)(p + 1) .  
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Since q is prime, either q I p - 1 or q I p + l .  The former is impossible since q > p so 
the latter holds. Since q > p but q I p + 1 , we must have q = p + 1 .  This forces p = 2, 
q = 3 and I G I  = 12. The result now follows from the preceding example . 

Groups of Order 60 
We illustrate how Sylow's Theorems can be used to unravel the structure of groups of 
a given order even if some groups of that order may be simple. Note the technique of 
changing from one prime to another and the inductive process where we use results on 
groups of order < 60 to study groups of order 60. 

Proposition 21. If I G I  = 60 and G has more than one Sylow 5-subgroup, then G is 
simple. 

Proof: Suppose by way of contradiction that IG I = 60 and ns > 1 but that there 
exists H a normal subgroup of G with H -:f. 1 or G. By Sylow's Theorem the only 
possibility for ns is 6. Let P E Syls (G), so that INc (P) I = 10 since its index is ns . 

If 5 I IH I  then H contains a Sylow 5-subgroup of G and since H is normal, it 
contains all 6 conjugates of this subgroup. In particular, I H I  � 1 + 6 · 4 = 25, and the 
only possibility is I H I = 30. This leads to a contradiction since a previous example 
proved that any group of order 30 has a normal (hence unique) Sylow 5-subgroup. This 
argument shows 5 does not divide I H I  for any proper normal subgroup H of G. 

If I H I = 6 or 12, H has a normal, hence characteristic, Sylow subgroup, which is 
therefore also normal in G. Replacing H by this subgroup if necessary, we may assume 

IH I  = 2, 3 or 4. Let G = Gj H, so IG I = 30, 20 or 1 5 .  In each case, G has a normal 
subgroup P of order 5 by previous results. If we let H1 be the complete preimage of 

P in G, then H1 � G, H 1 "I G and 5 I I  H1 1 .  This contradicts the preceding paragraph 
and so completes the proof. 

Corollary 22. As is simple. 

Proof" The subgroups ( ( 1 2 3 4 5) ) and ( ( 1 3 2 4 5) ) are distinct Sylow 5-subgroups 
of As so the result follows immediately from the proposition. 

The next proposition shows that there is a unique simple group of order 60. 

Proposition 23. If G is a simple group of order 60, then G � As . 

Proof" Let G be a simple group of order 60, so n2 = 3, 5 or 1 5 .  Let P E Syh(G) 
and let N = Nc(P), so IG : N l  = n2 . 

First observe that G has no proper subgroup H of index less that 5, as follows: if 
H were a subgroup of G of index 4, 3 or 2, then, by Theorem 3, G would have a normal 
subgroup K contained in H with Gj K isomorphic to a subgroup of S4, S3 or S2 . Since 
K -:f. G, simplicity forces K = l .  This is impossible since 60 ( = 1 G I) does not divide 
4! .  This argument shows, in particular, that n2 -:f. 3. 

If n2 = 5,  then N has index 5 in G so the action of G by left multiplication on 
the set of left cosets of N gives a permutation representation of G into Ss . Since (as 
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above) the kernel of this representation is a proper normal subgroup and G is simple, 
the kernel is 1 and G is isomorphic to a subgroup of Ss . Identify G with this isomorphic 
copy so that we may assume G � Ss . If G is not contained in As, then Ss = GAs 
and, by the Second Isomorphism Theorem, As n G is of index 2 in G.  Since G has no 
(normal) subgroup of index 2, this is a coat[adiction. This argument proves G � As. 
Since [G [ = [ As [ , the isomorphic copy of G in Ss coincides with As, as desired. 

Finally, assume n2 = 15. If for every pair of distinct Sylow 2-subgroups P and Q 
of G, P n Q = 1 ,  then the number of nonidentity elements in Sylow 2-subgroups of G 
would be (4 - 1) · 15 = 45 . But ns = 6 so the number of elements of order 5 in G is 
(5 - 1) · 6 = 24, accounting for 69 elements. This contradiction proves that there exist 
distinct Sylow 2-subgroups P and Q with [ P  n Q l = 2. Let M = Nc(P n Q). Since 
P and Q are abelian (being groups of order 4), P and Q are subgroups of M and since 
G is simple, M f:. G. Thus 4 divides [ M I  and [ M [  > 4 (otherwise, P = M = Q). The 
only possibility is [M [  = 12, i.e., M has index 5 in G (recall M cannot have index 3 
or 1) .  But now the argument of the preceding paragraph applied to M in place of N 
gives G � As .  This leads to a contradiction in this case because n2CAs) = 5 (cf. the 
exercises). The proof is complete. 

E X E R C I S E S 

Let G be a finite group and let p be a prime. 

1. Prove that if P E Sylp (G) and H is a subgroup of G containing P then P E Sylp (H). 
Give an example to show that, in general, a Sylow p-subgroup of a subgroup of G need 
not be a Sylow p-subgroup of G. 

2. Prove that if H is a subgroup of G and Q E Sylp (H) then g Qg-1 E Sylp (gHg-1 ) for all 
g E G. 

3. Use Sylow's Theorem to prove Cauchy's Theorem. (Note that we only used Cauchy's 
Theorem for abelian groups - Proposition 3.21 - in the proof of Sylow's Theorem so 
this line of reasoning is not circular.) 

4. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D12 and S3 x SJ . 

5. Show that a Sylow p-subgroup of D2n is cyclic and normal for every odd prime p. 

6. Exhibit all Sylow 3-subgroups of A4 and all Sylow 3-subgroups of S4 . 

7. Exhibit all Sylow 2-subgroups of S4 and find elements of S4 which conjugate one of these 
into each of the others. 

8. Exhibit two distinct Sylow 2-subgroups of Ss and an element of Ss that conjugates one 
into the other. 

9. Exhibit all Sylow 3-subgroups of SL2(lF3) (cf. Exercise 9, Section 2. 1) .  

10. Prove that the subgroup of SL2 (lF3) generated by ( � �1 ) and ( � �
1
) is the unique 

Sylow 2-subgroup of SL2 (lFJ) (cf. Exercise 10, Section 2.4). 

11. Show that the center of SL2(lF3) is the group of order 2 consisting of ±I, where I is the 
identity matrix. Prove that SL2(lF3)/Z(SL2 (lF3)) � A4. [Use facts about groups of order 
12.] 

12. Let 2n = 2ak where k is odd. Prove that the number of Sylow 2-subgroups of D2n is k .  
[Prove that if P E Syh(D2n ) then Nn2" (P) = P .] 
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13. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing 
its order. 

14. Prove that a group of order 312  has a normal Sylow p-subgroup for some prime p dividing 
its order. 

15. Prove that a group of order 351  has a normal Sylow p-subgroup for some prime p dividing 
its order. 

16. Let IG I  = pqr, where p, q and r are primes with p < q < r. Prove that G has a normal 
Sylow subgroup for either p, q or r. 

17. Prove that if IG I = 105 then G has a normal Sylow 5-subgroup and a normal Sylow 
?-subgroup. 

18. Prove that a group of order 200 has a normal Sylow 5-subgroup. 

19. Prove that if IG I  = 6545 then G is not simple. 

20. Prove that if IG I  = 1365 then G is not simple. 

21. Prove that if IG I  = 2907 then G is not simple. 

22. Prove that if IG I  = 132 then G is not simple. 

23. Prove that if IG I  = 462 then G is not simple. 

24. Prove that if G is a group of order 231 then Z (G) contains a Sylow 1 1-subgroup of G and 
a Sylow ?-subgroup is normal in G. 

25. Prove that if G is a group of order 385 then Z(G) contains a Sylow ?-subgroup of G and 
a Sylow 1 1-subgroup is normal in G. 

26. Let G be a group of order 105.  Prove that if a Sylow 3-subgroup of G is normal then G is 
abelian. 

27. Let G be a group of order 3 15  which has a normal Sylow 3-subgroup. Prove that Z(G) 
contains a Sylow 3-subgroup of G and deduce that G is abelian. 

28. Let G be a group of order 1575. Prove that if a Sylow 3-subgroup of G is normal then a 
Sylow 5-subgroup and a Sylow ?-subgroup are normal. In this situation prove that G is 
abelian. 

29. If G is a non-abelian simple group of order < 100, prove that G ;:::::: As. [Eliminate all 
orders but 60.] 

30. How many elements of order 7 must there be in a simple group of order 168? 

31. For p = 2, 3 and 5 find np (As)  and np (Ss ) . [Note that A4 .::::: A5 .] 

32. Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P � H and 
H � K,  prove that P is normal in K. Deduce that if P E Sylp (G) and H = Nc (P), then 
Nc (H) = H (in words: normalizers of Sylow p-subgroups are self-normalizing). 

33. Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that 
P n H is the unique Sylow p-subgroup of H. 

34. Let P E Sylp (G) and assume N � G. Use the conjugacy part of Sylow's Theorem to 
prove that P n N is a Sylow p-subgroup of N. Deduce that P N 1 N is a Sylow p-subgroup 
of G 1 N (note that this may also be done by the Second Isomorphism Theorem - cf. 
Exercise 9, Section 3.3). 

35. Let P E Sylp (G) and let H .::::: G. Prove that gPg-1 n H is a Sylow p-subgroup of H 
for some g E G. Give an explicit example showing that hPh-1 n H is not necessarily a 
Sylow p-subgroup of H for any h E H (in particular, we cannot always take g = 1 in the 
first part of this problem, as we could when H was normal in G). 
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36. Prove that if N is a normal subgroup of G then np (G J N) :S np (G). 

37. Let R be a normal p-subgroup of G (not necessarily a Sylow subgroup). 
(a) Prove that R is contained in every Sylow p-subgroup of G _ 
(b) If S is another normal p-subgroup of G, prove that R S is also a normal p-subgroup 

of G.  
(c) The subgroup Op (G) is defined to be the group generated by all normal p-subgroups 

of G. Prove that Op (G) is the unique largest normal p-subgroup of G and Op (G) 
equals the intersection of all Sylow p-subgroups of G _ 

(d) Let G = G/Op (G). Prove that Op(l}) = I (i.e., G has no nontrivial normal p
subgroup). 

38. Use the method of proof in Sylow's Theorem to show that if np is not congruent to 

l (mod p2) then there are distinct Sylow p-subgroups P and Q of G such that 
I P : P n Q l = I Q : P n Q l = P-

39. Show that the subgroup of strictly upper triangular matrices in G Ln (JF P) ( cf. Exercise 17, 
Section 2. 1)  is a Sylow p-subgroup of this finite group. [Use the order formula in Section 
L4 to find the order of a Sylow p-subgroup of G Ln (lFp)-1 

40. Prove that the number of Sylow p-subgroups of G Lz (lF p) is p + 1. [Exhibit two distinct 
Sylow p-subgroups.] 

41. Prove that SLz (lF4) � As (cf. Exercise 9, Section 2. 1 for the definition of SL2 (JF4)). 

42. Prove that the group of rigid motions in JR3 of an icosahedron is isomorphic to As _ [Recall 
that the order of this group is 60: Exercise 13 ,  Section 1 .2.] 

43. Prove that the group of rigid motions in JR3 of a dodecahedron is isomorphic to As - (As 
with the cube and the tetrahedron, the icosahedron and the dodecahedron are dual solids.) 
[Recall that the order of this group is 60: Exercise 12, Section L2.] 

44. Let p be the smallest prime dividing the order of the finite group G. If P E Sylp (G) and 
P is cyclic prove that Nc(P) = Cc(P)_ 

45. Find generators for a Sylow p-subgroup of Szp . where p is an odd prime. Show that this 

is an abelian group of order p2 • 

46. Find generators for a Sylow p-subgroup of Spz ,  where p is a prime. Show that this is a 

non-abelian group of order pP+ 1 _ 
47. Write and execute a computer program which 

(i) gives each odd number n < 10, 000 that is not a power of a prime and that has some 
prime divisor p such that np is not forced to be 1 for all groups of order n by the 
congruence condition of Sylow's Theorem, and 

(ii) gives for each n in (i) the factorization of n into prime powers and gives the list of all 
permissible values of np for all primes p dividing n (i.e., those values not ruled out 
by Part 3 of Sylow's Theorem). 

48. Carry out the same process as in the preceding exercise for all even numbers less than 
1000. Explain the relative lengths of the lists versus the number of integers tested. 

49. Prove that if IG I = 2nm where m is odd and G has a cyclic Sylow 2-subgroup then G has 
a normal subgroup of order m. [Use induction and Exercises 1 1  and 12 in Section 2.] 

50. Prove that if U and W are normal subsets of a Sylow p-subgroup P of G then U is conjugate 
to W in G  if and only if U is conjugate to W in Nc(P). Deduce that two elements in the 
center of P are conjugate in G if and only if they are conjugate in Nc(P). (A subset U of 
P is normal in P if Np (U) = P.) 
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51. Let P be a Sylow p-subgroup of G and let M be any subgroup of G which contains Na (P). 
Prove that IG  : M l  = l (mod p). 

The following sequence of exercises leads to the classification of all numbers n with the property 
that every group of order n is cyclic (for example, n = 15 is such an integer). These arguments 
are a vastly simplified prototype for the proof that every group of odd order is solvable in the 
sense that they use the structure (commutativity) of the proper subgroups and their embedding 
in the whole group (we shall see that distinct maximal subgroups intersect in the identity) to 
obtain a contradiction by counting arguments. In the proof that groups of odd order are solvable 
one uses induction to reduce to the situation in which a minimal counterexample is a simple 
group - but here every proper subgroup is solvable (not abelian as in our situation). The 
analysis of the structure and embedding of the maximal subgroups in this situation is much 
more complicated and the counting arguments are (roughly speaking) replaced by character 
theory arguments (as will be discussed in Part VI). 

52. Suppose G is a finite simple group in which every proper subgroup is abelian. If M and 
N are distinct maximal subgroups of G prove M n N = 1 .  [See Exercise 23 in Section 3 .] 

53. Use the preceding exercise to prove that if G is any non-abelian group in which every proper 
subgroup is abelian then G is not simple. [Let G be a counterexample to this assertion and 
use Exercise 24 in Section 3 to show that G has more than one conjugacy class of maximal 
subgroups. Use the method of Exercise 23 in Section 3 to count the elements which lie in 
all conjugates of M and N, where M and N are nonconjugate maximal subgroups of G; 
show that this gives more than IG I  elements.] 

54. Prove the following classification: if G is a finite group of order Pl pz . . .  Pr where the 
Pi 's are distinct primes such that Pi does not divide Pj - 1 for all i and j ,  then G is 
cyclic. [By induction, every proper subgroup of G is cyclic, so G is not simple by the 
preceding exercise. If N is a nontrivial proper normal subgroup, N is cyclic and GIN acts 
as automorphisms of N.  Use Proposition 16 to show that N :=:: Z(G) and use induction to 
show G 1 Z( G) is cyclic, hence G is abelian by Exercise 36 of Section 3 . 1 .] 

55. Prove the converse to the preceding exercise: if n � 2 is an integer such that every group 
of order n is cyclic, then n = Pl P2 . . .  Pr is a product of distinct primes and Pi does not 
divide Pj - 1 for all i, j. [If n is not of this form, construct noncyclic groups of order n 

using direct products of noncyclic groups of order p2 and pq, where p I q - 1 .] 

56. If G is a finite group in which every proper subgroup is abelian, show that G is solvable. 

4.6 THE SIM PLICITY OF An 
There are a number of proofs of the simplicity of An , n ::: 5. The most elementary 
involves showing An is generated by 3-cycles . Then one shows that a normal subgroup 
must contain one 3-cycle hence must contain all the 3-cycles so cannot be a proper 
subgroup. We include a less computational approach. 

Note that A3 is an abelian simple group and that A4 is not simple (nz (A4) = 1) .  

Theorem 24. An is  simple for all n ::: 5 .  

Proof By induction on n .  The result has already been established for n = 5 ,  
so assume n ::: 6 and let G = An . Assume there exists H <J G with H =/::- 1 or G.  
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For each i E { 1 ,  2, . . . , n }  let Gi be the stabilizer of i in the natural action of G on 
i E { 1 ,  2, . . . , n} .  Thus Gi :S G and Gi � An- I ·  By induction, Gi is simple for 
1 :S i :S n .  

Suppose first that there i s  some r E H with r I 1 but r (i) = i for some 
i E { 1 ,  2, . . .  , n} .  Since r E H n Gi and H n Gi ::::) Gi , by the simplicity of Gi 
we must have H n G i = G i , that is 

Gi :S H. 

By Exercise 2 of Section 1, aGia-1  = Ga(i ) •  so for all i, a Gia-1  :S a Ha - 1 
= H. 

Thus 

Gj :S H, for all j E { 1 ,  2, . . . , n} . 

Any ), E An may be written as a product of an even number, 2t, of transpositions, so 

where J...k is a product of two transpositions. Since n > 4 each J...k E G j ,  for some j ,  
hence 

G = ( Gt . G2 , . . .  , Gn )  :S H, 

which is a contradiction. Therefore if r 1 1 is an element of H then r (i)  1 i for all 
i E { 1 ,  2, . . . , n} ,  i.e., no nonidentity element of H fixes any element of { 1 ,  2, . . .  , n} .  

It follows that if  Tt . r2 are elements of H with 

r1 (i) = r2 (i) for some i, then r1 = r2 (4.2) 

since then rz
1
it (i) = i .  

Suppose there exists a i E H such that the cycle decomposition of i contains a 
cycle of length :;:: 3, say 

i = (at a2 a3 . . .  ) (ht h2 . . . ) . . . . 

Let a E G be an element with a (at )  = a1 ,  a (a2) = a2 but a (a3) I a3 (note that such 
a a exists in An since n :;:: 5). By Proposition 10 

it = a ia -
1 

= (at a2 a (a3) . . .  )(a (ht) a (b2) . . . ) . . . 

so i and i1 are distinct elements of H with i (at) = it (a1)  = a2, contrary to (2). This 
proves that only 2-cycles can appear in the cycle decomposition of nonidentity elements 
of H. 

Let i E H with i I 1 ,  so that 

r = (at a2)(a3 a4) (as a6) . . .  

(note that n :;:: 6 is used here). Let a = (a1 a2) (a3 a5) E G. Then 

it = a ia - 1 
= (ai a2)(as �){a3 a6) . . . , 

hence i and it are distinct elements of H with i (a1)  = i1 (a1 )  = a2, again contrary to 
(2). This completes the proof of the simplicity of An . 
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E X E R C I S E S 

Let G be a group and let n be an infinite set. 

1. Prove that An does not have a proper subgroup of index < n for all n � 5.  

2. Find all normal subgroups of Sn for all n � 5. 

3. Prove that An is the only proper subgroup of index < n in Sn for all n � 5. 

4. Prove that An is generated by the set of all 3-cycles for each n � 3.  

5. Prove that if there exists a chain of subgroups Gt .:S G2 .:S . . . .:::: G such that G = u�1 G; 
and each G; is simple then G is simple. 

6. Let D be the subgroup of Sn consisting of permutations which move only a finite number 
of elements of n (described in Exercise 17  in Section 3) and let A be the set of all elements 
a E D such that a acts as an even permutation on the (finite) set of points it moves. Prove 
that A is an infinite simple group. [Show that every pair of elements of D lie in a finite 
simple subgroup of D.] 

7. Under the notation of the preceding, exercise prove that if H ::;1 Sn and H =/= 1 then 
A .:S H, i.e., A is the unique (nontrivial) minimal normal subgroup of Sn. 

8. Under the notation of the preceding two exercises prove that I D I  = lA I = 1 r.1 1 .  Deduce 
that 

if Sn :;:::: S11 then lr.l l  = 1 � 1 -
[Use the fact that D is generated by transpositions. You may assume that countable unions 
and finite direct products of sets of cardinality l r.l l also have cardinality l r.l l .] 
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CHAPTER 5 

D irect a nd Se m idirect Products 
a nd Abe l ia n Gro u ps 

In this chapter we consider two of the easier methods for constructing larger groups 
from smaller ones, namely the notions of direct and semidirect products. This allows 
us to state the Fundamental Theorem on Finitely Generated Abelian Groups, which in 
particular completely classifies all finite abelian groups. 

5.1 DIRECT PRODUCTS 

We begin with the definition of the direct product of a finite and of a countable number 
of groups (the direct product of an arbitrary collection of groups is considered in the 
exercises) . 

Definition. 
(1) The direct product GI X G2 X . . . X ell of the groups G I . G2 ,  . . .  ' Gn with 

operations *I · *2 · . . .  , *n •  respectively, is the set of n-tuples (8I · 82 • . . .  , 8n ) 
where 8; E G; with operation defined componentwise: 

(8I , 82 • · · · , 8n ) * (h i ,  h2 ,  · · · , hn) = (8I *I  h i , 82 *2 h2 ,  · · · , 8n *n hn ) .  

(2) Similarly, the direct product G I  x G2 x · · · of the groups GI , G2 ,  . . . with 
operations *I ,  *2 · . . . , respectively, is the set of sequences (8I ,  82 • . . .  ) where 

8; E G; with operation defined componentwise: 

Although the operations may be different in each of the factors of a direct product, 
we shall, as usual, write all abstract groups multiplicatively, so that the operation in ( 1 )  
above, for example, becomes simply 
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Examples 

(1) Suppose G; = IR (operation addition) for i = 1 ,  2, . . .  , n. Then IR x IR x · · · x IR 
(n-factors) is the familiar Euclidean n-space !Rn with usual vector addition: 

(at . a2 , . . .  , an ) + (bt , bz , . . .  , bn ) = (at + bt , az + bz , . . . , an + bn ) -
(2) To illustrate that groups forming the direct product (and corresponding operations) 

may be completely general, let Gt = Z, let Gz = S3 and let G3 = GLz(IR) , where the 
group operations are addition, composition, and matrix multiplication, respectively. 
Then the operation in Gt x Gz x G3 is defined by 

(n , a. (a db ) ) (m , r, (p q ) ) = (n + m, a o r, (ap + dbr aq +dbs ) ) . c r s cp + r cq + s 

Proposition 1. If Gt , . . . , Gn are groups, their direct product is a group of order 
IG t i iGz l  · · · IGn l (if any G; is infinite, so is the direct product). 

Proof: Let G = Gt x Gz x · · · x Gn . The proof that the group axioms hold 
for G is straightforward since each axiom is a consequence of the fact that the same 
axiom holds in each factor, G;,  and the operation on G is defined componentwise. For 
example, the associative law is verified as follows: 

Let (at . a2 , . . . , an). (bt , bz ,  . . .  , bn ). and (ct . c2 , . . .  , en) E G. Then 

(at , az ,  . . .  , an) [ (bt , bz , . . . , bn) (ct , c2 , . . .  , Cn )] 
= (at , az ,  . . .  , an) (btCt . bzCz , . . .  , bnCn) 
= (at (bt Ct) ,  az(bzc2) ,  . . .  , an (bncn)) 
= ( (atbt )Ct , (azbz)Cz , . . .  , (anbn)Cn) 
= [(at , az , · · · , an) (bt , bz ,  · · · , bn ) ] (ct , C2 , . . .  , Cn) ,  

where in the third step we have used the associative law in each component. The 
remaining verification that the direct product is a group is similar: the identity of 
G is the n-tuple ( l t , 12 • . . .  , 1n ) ,  where 1; is the identity of G; and the inverse of 

( ) . (g-t - t -t) h -t . h . f 
. G gt . gz , . . .  , gn ts t , g2 , . . .  , gn , w ere g; ts t e mverse o g; m ; .  

The formula for the order of G is clear. 

If the factors of the direct product are rearranged, the resulting direct product is 
isomorphic to the original one ( cf. Exercise 7). 

The next proposition shows that a direct product, Gt x G2 x · · · x Gn , contains an 
isomorphic copy of each G; . One can think of these specific copies as the "coordinate 
axes" of the direct product since, in the case of lR x IR, they coincide with the x and y 

axes. One should be careful, however, not to think of these "coordinate axes" as the only 
copies of the groups G; in the direct product. For example in lR x lR any line through 
the origin is a subgroup of !R x lR isomorphic to lR (and lR x lR has infinitely many pairs 
oflines which are coordinate axes, viz. any rotation of a given coordinate system). The 
second part of the proposition shows that there are projection homomorphisms onto 
each of the components. 
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Proposition 2. Let G t . Gz ,  . . . , Gn be groups and let G = G1  x · · · x Gn be their 
direct product. 

(1) For each fixed i the set of elements of G which have the identity of G j in the ph 
position for all j =ft i and arbitrary elements of G; in position i is a subgroup 
of G isomorphic to G; : 

G; � {( 1 . 1 ,  . . .  , l , g; ,  1 ,  . . . , 1) I g; E G ; } , 
(here g; appears in the ;th position). If we identify G; with this subgroup, then 
G; � G and 

GjG; � G1  X · · · X G;- 1 X Gi+l  X · · ·  X Gn .  

(2) For each fixed i define rr; : G � G; by 

rr; ((gJ , gz ,  . . · , gn)) = g; . 

Then rr; is a surjective homomorphism with 

ker rr; = {(gJ , . . .  , g;-J , 1 ,  gi+l ·  . . . , gn) I gj E Gj for all j =ft i } 
� G1  X · · · X G;-1 X Gi+l X · • • X Gn 

(here the 1 appears in position i). 
(3) Under the identifications in part ( 1  ) , if x E G; and y E G j for some i :f: j ,  then 

xy = yx. 

Proof: ( 1) Since the operation in G is defined componentwise, it follows easily 
from the subgroup criterion that {( 1 ,  1 ,  . . . , 1 ,  g; , 1 , . . . , 1) I g; E G; } is a subgroup of 
G. Furthermore, the map g; � ( 1 ,  1 ,  . . .  , 1, g; , 1 ,  . . . , 1) is seen to be an isomorphism 
of G; with this subgroup. Identify G; with this isomorphic copy in G. 

To prove the remaining parts of ( 1) consider the map 

cp : G --+ Gt X · · · X Gi- l X Gi+l X • • · X Gn 

defined by 
cp(gJ , gz , · · · , gn ) = (gJ , · · · , g;- J , gi+l • · · · ,  gn) 

(i.e. ,  cp erases the ; th component of G). The map cp is a homomorphism since 

cp((gJ , . . . , gn) (h J ,  . . . , hn)) = cp((glh J , . . .  , gnhn )) 

= (g!h J , . . .  , g;- !hi- J , gi+l hi+l • · . · , gnhn) 

= (gJ , · · · ,  g;- J , gi+l • · · . , gn) (h t , . . · , h;-J , hi+l • · . . , hn) 
= cp((gJ , · · . ,  gn))cp((h t , . . . , hn)) . 

Since the entries in position j are arbitrary elements of G j for all j, cp is surjective. 
Furthermore, 

ker cp = { (gJ , . . . , gn ) I gj = 1 for all j :f: i }  = G; .  

This proves that G ;  is a normal subgroup of G (in particular, it again proves this copy 
of G; is a subgroup) and the First Isomorphism Theorem gives the final assertion of 
part ( 1). 
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In (2) the argument that rr; is a surjective homomorphism and the kernel is the 
subgroup described is very similar to that in part ( 1 ), so the details are left to the reader. 

In part (3) if x = ( 1 ,  . . .  , 1 , g; ,  1 , . . . , 1) and y = ( 1 , . . .  , 1 . gj . 1 ,  . . .  , 1 ) , where 
the indicated entries appear in positions i ,  j respectively, then 

xy = ( 1 ,  . . .  , 1 , g; , 1 , . . .  , 1 ,  gj . 1 ,  . . . , 1 ) = yx 

(where the notation is chosen so that i < j). This completes the proof. 

A generalization of this proposition appears as Exercise 2. 
We shall continue to identify the "coordinate axis" subgroups described in part (1 ) 

of the proposition with their isomorphic copies, the G; 's. The ith such subgroup is often 
called the ith component or ith factor of G. For instance, when we wish to calculate in 
Zn x Zm we can let x be a generator of the first factor, let y be a generator of the second 
factor and write the elements of Zn x Zm in the form xa yb . This replaces the formal 
ordered pairs (x ,  1) and ( 1 ,  y) with x and y (so xa yb replaces (xa

, yb) ) . 

Examples 

(1) Under the notation of Proposition 2 it follows from part (3) that if x; E G; , 1 ::S i ::S n, 
then for all k E Z 

Since the order of Xt x2 . . .  Xn is the smallest positive integer k such that xf = 1 for all 
i, we see that 

(where this order is infinite if and only if one of the x; 's has infinite order). 
(2) Let p be a prime and for n E z+ consider 

(n factors) .  

Then E !"' is  an abelian group of order pn with the property that x P = 1 for all x E E p" • 
This group is the elementary abelian group of order pn 

described in Section 4.4. 
(3) For p a prime, we show that the elementary abelian group oforder p2 has exactly p+ 1 

subgroups of order p (in particular, there are more than the two obvious ones). Let 
E = E p2 .  Since each nonidentity element of E has order p, each of these generates a 
cyclic subgroup of E of order p. By Lagrange's Theorem distinct subgroups of order 
p intersect trivially. Thus the p2 - 1 nonidentity elements of E are partitioned into 
subsets of size p - 1 (i.e., each of these subsets consists of the nonidentity elements 
of some subgroup of order p ) . There must therefore be 

p2 - 1  -- = p + l 
p - 1  

subgroups of order p. When p = 2, E is the Klein 4-group which we have already 
seen has 3 subgroups of order 2 (cf. also Exercises 10 and 1 1) . 
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E X E R C I S E S  

1. Show that the center of a direct product is the direct product of the centers: 

Z(al x a2 x · · · X an) = Z(ai ) x Z(G2) X · · · x Z(an) .  

Deduce that a direct product of groups i s  abelian i f  and only i f  each of the factors i s  abelian. 

2. Let a 1 . a2 • . . .  , an be groups and let a =  a 1  x · · · x an .  Let I be a proper, nonempty 
subset of { 1 ,  . . .  , n} and let J = { 1 ,  . . . • n} - I . Define a I to be the set of elements of a 
that have the identity of a j in position j for all j E J.  
(a) Prove that a I is isomorphic to  the direct product of the groups a; , i E I. 
(b) Prove that a I is a normal subgroup of a and a I a I � a 1 .  
(c) Prove that a � a I x aJ . 

3. Under the notation of the preceding exercise let I and K be any disjoint nonempty subsets 
of { 1 ,  2, . . . , n} and let a I and a K be the subgroups of a defined above. Prove that 
xy = yx for all x E a I and all y E a K .  

4 .  Let A and B be finite groups and let p be a prime. Prove that any Sylow p-subgroup 
of A x B is of the form P x Q, where P E Sylp (A) and Q E Sylp (B). Prove that 
np (A x B) = np (A)np (B). Generalize both of these results to a direct product of any 
finite number of finite groups (so that the number of Sylow p-subgroups of a direct product 
is the product of the numbers of Sylow p-subgroups of the factors). 

5. Exhibit a nonnormal subgroup of Qs x Z4 (note that every subgroup of each factor is 
normal). 

6. Show that all subgroups of Qs x E2" are normal. 

7. Let a 1 .  a2 , . . .  , an .be groups and let n be a fixed element of Sn . Prove that the map 

({Jrr : a 1 X a2 X • • • X an � arr-1 ( 1 ) X arr-1 (2) X • • · X arr-1 (n) 

defined by 

({Jrr (gl , 82 • · · · • Kn ) = (grr-1 (1) • Krr- 1 (2) •  · · · ' Krr-1 (n)) 

is an isomorphism (so that changing the order of the factors in a direct product does not 
change the isomorphism type). 

8. Let a1 = a2 = · · · = an and let a = a 1 x · · · x an . Under the notation of the 
preceding exercise show that ({Jrr E Aut(a). Show also that the map n t-+ ({Jrr is an 
injective homomorphism of Sn into Aut( a). (In particular, ({Jrr1 o ({Jrr2 = ({Jrr1rrz · It is at this 

point that the n -1 •s in the definition of ({Jrr are needed. The underlying reason for this is 
because if e; is the n-tuple with 1 in position i and zeros elsewhere, l :::: i :::: n, then Sn 
acts on fe1 , . . .  , en } by n · e; = err(i) ; this is a left group action. If the n-tuple (gi , . . . , Kn) 
is represented by g1 e1 + · · · + gn en ,  then this left group action on {ei , . . .  , en } extends to 
a left group action on sums by 

n · (g1e1 + g2e2 + · · · + Kn en )  = g1 err(l) + 82err(2) + · · · + gn err(n) · 

The coefficient of err(i) on the right hand side is g; ,  so the coefficient of e; is Krr-1 (i ) .  Thus 
the right hand side may be rewritten as Krr- 1 (I )el + K:rr-1 (2) e2 + · · · + Krr-1 (n) en , which is 
precisely the sum attached to the n-tuple (g:rr- 1 (l) • Krr-1 (2) , . . .  , Krr-1 (n)> · In other words, 
any permutation of the "position vectors" e1 , . . . •  en (which fixes their coefficients) is the 
same as the inverse permutation on the coefficients (fixing the e; ' s). If one uses n 's in place 
of n - � >s in the definition of ({Jrr then the map n t-+ ({Jrr is not necessarily a homomorphism 
- it corresponds to a right group action.) 
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9. Let G; be a field F for all i and use the preceding exercise to show that the set of n x n 
matrices with one 1 in each row and each column is a subgroup of G Ln (F) isomorphic to 
Sn (these matrices are called permutation matrices since they simply permute the standard 
basis e1 • . . .  , en (as above) of the n-dimensional vector space F x F x · · · x F). 

10. Let p be a prime. Let A and B be two cyclic groups of order p with generators x and y, 

respectively. Set E = A x  B so that E is the elementary abelian group of order p2: EP2 .  
Prove that the distinct subgroups of E of order p are 

( x } , ( xy } , ( xi } ,  ( xyp- t } ,  ( y } 

(note that there are p + 1 of them). 

11. Let p be a prime and let n E z+ . Find a formula for the number of subgroups of order p 
in the elementary abelian group E p" • 

12. Let A and B be groups. Assume Z(A) contains a subgroup Zt and Z(B) contains a 
subgroup Zz with Zt � Zz . Let this isomorphism be given by the map x; r+ y; for all 
x; E Z t ·  A central product of A and B is a quotient 

(A x B)/Z where Z = { (x; , yj
1 ) I x; E Zl } 

and is denoted by A * B - it is not unique since it depends on Z 1 ,  Zz and the isomorphism 
between them. (Think of A * B as the direct product of A and B "collapsed" by identifying 
each element x; E Zt with its corresponding element y; E Zz.) 
(a) Prove that the images of A and B in the quotient group A * B are isomorphic to A 

and B, respectively, and that these images intersect in a central subgroup isomorphic 
to Zt . Find lA  * B l .  

(b) Let Z4 = ( x  } .  Let Ds = ( r, s }  and Q s  = ( i ,  j }  be given by their usual generators 
and relations. Let Z4 * Ds be the central product of Z4 and Ds which identifies 
x2 and r2 (i.e., Zt = ( x2 } ,  Z2 = ( r2 } and the isomorphism is x2 r+ r2) and let 
Z4 * Qs be the central product of Z4 and Qs which identifies x2 and - 1 .  Prove that 
Z4 * Ds � Z4 * Qg . 

13. Give presentations for the groups Z4 * Ds and Z4 * Qs constructed in the preceding exercise. 

14. Let G = At x Az x · · · x An and for each i let B; be a normal subgroup of A; . Prove that 
Bt x Bz x · · · x Bn :9 G and that 

(At X Az X · · ·  X An)f(Bt X Bz X · · · X Bn) � (A t /Bt ) X (Az/Bz) X · · · x (AnfBn ) . 

The following exercise describes the direct product of an arbitrary collection of groups. The 
terminology for the Cartesian product of an arbitrary collection of sets may be found in the 
Appendix. 

15. Let I be any nonempty index set and let ( G; , *i ) be a group for each i E I. The direct 
product of the groups G; , i E I is the set G = 0iE! G; (the Cartesian product of the G; 's) 
with a binary operation defined as follows: if 0 a; and 0 b; are elements of G, then their 
product in G is given by 

(i .e., the group operation in the direct product is defined componentwise). 
(a) Show that this binary operation is well defined and associative. 
(b) Show that the element 0 l; satisfies the axiom for the identity of G, where l; is the 

identity of G; for all i .  
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(c) Show that the element 0 aj1 is the inverse of 0 a; , where the inverse of each com-
ponent element a; is taken in the group G; . 

Conclude that the direct product is a group. 
(Note that if I = { 1 ,  2, . . . , n} ,  this definition of the direct product is the same as the 
n-tuple definition in the text.) 

16. State and prove the generalization of Proposition 2 to arbitrary direct products. 

17. Let I be any nonempty index set and let G; be a group for each i E I. The restricted 
direct product or direct sum of the groups G; is the set of elements of the direct product 
which are the identity in all but finitely many components, that is, the set of all elements 
n a; E niE/ G; such that a; = 1; for all but a finite number of i  E I .  
(a) Prove that the restricted direct product i s  a subgroup of the direct product. 
(b) Prove that the restricted direct product is normal in the direct product. 
(c) Let I = z+ and let p; be the ;th integer prime. Show that if G; = Zjp; Z for all 

i E z+, then every element of the restricted direct product of the G; 's has finite order 
but 0; Ell+ G; has elements of infinite order. Show that in this example the restricted 
direct product is the torsion subgroup of the direct product (cf. Exercise 6, Section 
2. 1 ). 

18. In each of (a) to (e) give an example of a group with the specified properties: 
(a) an infinite group in which every element has order 1 or 2 
(b) an infinite group in which every element has finite order but for each positive integer 

n there is an element of order n 
(c) a group with an element of infinite order and an element of order 2 
(d) a group G such that every finite group is isomorphic to some subgroup of G 
(e) a nontrivial group G such that G � G x G. 

5.2 THE FUN DAM ENTAL THEOREM OF FIN ITELY GENERATED 
ABELIAN GROUPS 

Definition. 
(1) A group G is finitely generated if there is a finite subset A of G such that 

G = ( A ) . 
(2) For each r E 2:. with r ::::: 0, let zr = 2:. X 2:. X · • • X 2:. be the direct product of 

r copies of the group Z, where 2:.0 = I .  The group zr is called the free abelian 
group of rank r.  

Note that any finite group G is, a fortiori, finitely generated: simply take A = G 
as a set of generators. Also, zr is finitely generated by e 1 , e2 , . . .  , en where e; is the 
n-tuple with 1 in position i and zeros elsewhere. We can now state the fundamental 
classification theorem for (finitely generated) abelian groups. 

Theorem 3. (Fundamental Theorem of Finitely Generated Abelian Groups) Let G be 
a finitely generated abelian group. Then 

(1) 
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(a) r :::: 0 and nj :::: 2 for all j ,  and 
(b) ni+1 I ni for 1 :::: i :::: s - 1 

(2) the expression in ( 1 )  is unique: if G � 71./ x Zm1 x Zm2 x · · · x Zm. ,  where t and 
m. ,  mz ,  . . .  , mu satisfy (a) and (b) (i.e., t :::: 0, mj :::: 2 for all j and mi+l I mi 
for ' 1  :::: i :::: u - 1 ), then t = r, u = s and mi = ni for all i .  

Proof We shall derive this theorem in Section 12. 1 as a consequence of a more 
general classification theorem. For finite groups we shall give an alternate proof at the 
end of Section 6. 1 .  

Definition. The integer r i n  Theorem 3 i s  called the free rank or Betti number of G 
and the integers n 1 ,  nz ,  . . .  , ns are called the invariant factors of G. The description of 
G in Theorem 3( 1 )  is called the invariant factor decomposition of G. 

Theorem 3 asserts that the free rank and (ordered) list of invariant factors of an 
abelian group are uniquely determined, so that two finitely generated abelian groups 
are isomorphic if and only if they have the same free rank and the same list of invariant 
factors. Observe that a finitely generated abelian group is a finite group if and only if 
its free rank is zero. 

The order of a finite abelian group is just the product of its invariant factors (by 
Proposition 1 ). If G is a finite abelian group with invariant factors n 1 , n2 , • • •  , n s ,  where 
ni+l I ni , 1 :::: i :::: s - 1 ,  then G is said to be of type (n. ,  nz ,  . . .  , ns) .  

Theorem 3 gives an effective way of listing all finite abelian groups of a given 
order. Namely, to find (up to isomorphism) all abelian groups of a given order n one 
must find all finite sequences of integers n t , nz , . . .  , ns such that 

(1) nj :::: 2 for all j E { 1 . 2, . . . , s} ,  
(2) ni+l I ni ,  1 :::: i :::: s - 1 ,  and 
(3) ntnz · · · ns = n .  

Theorem 3 states that there is a bijection between the set of such sequences and 
the set of isomorphism classes of finite abelian groups of order n (where each sequence 
corresponds to the list of invariant factors of a finite abelian group). 

Before illustrating how to find all such sequences for a specific value of n we make 
some general comments. First note that nt :::: nz :::: · · · :::: ns , so nt is the largest 
invariant factor. Also, by property (3) each ni divides n .  If p is any prime divisor of n 
then by (3) we see that p must divide ni for some i .  Then, by (2), p also divides nj for 
all j :::: i .  It follows that 

every prime divisor of n must divide the first invariant factor n 1 • 
In particular, if n is the product of distinct primes (all to the first power)1 we see that 
n I n 1 , hence n = n 1 • This proves that if n is squarefree, there is only one possible list 
of invariant factors for an abelian group of order n (namely, the list n1 = n): 

1 Such integers are called squarefree since they are not divisible by any square > 1 .  
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Corollary 4. If n is the product of distinct primes, then up to isomorphism the only 
abelian group of order n is the cyclic group of order n, Zn . 

The factorization of n into prime powers is the first step in determining all possible 
lists of invariant factors for abelian groups of order n .  

Example 

Suppose n = 180 = 22 · 32 · 5. As noted above we must have 2 · 3 · 5 I n t , so possible 
values of n 1 are 

n 1 = 22 · 32 · 5, 22 · 3 · 5, 2 . 32 . 5, or 2 . 3 . 5. 

For each of these one must work out all possible n2 's (subject to n2 l n t  and n 1 n2 l n). For 
each resulting pair n 1 ,  n2 one must work out all possible n3 's etc. until all lists satisfying 
( 1 )  to (3) are obtained. 

For instance, if n1 = 2 · 32 · 5, the only number n2 dividing nt with n 1 n2 dividing n 
is n2 = 2. In this case n 1 n2 = n, so this list is complete: 2 · 32 · 5, 2. The abelian group 
corresponding to this list is Z90 X Z2. 

If nt = 2 · 3 · 5, the only candidates for n2 are n2 = 2, 3 or 6. If n2 = 2 or 3, then 
since n3 I n2 we would necessarily have n3 = n2 (and there must be a third term in the 
list by property (3)). This leads to a contradiction because n 1 n2n3 would be divisible by 
23 or 33 respectively, but n is not divisible by either of these numbers. Thus the only list 
of invariant factors whose first term is 2 · 3 · 5 is 2 · 3 · 5, 2 · 3. The corresponding abelian 
group is Z3o x Z6. 

Similarly, all permissible lists of invariant factors and the corresponding abelian groups 
of order 1 80 are easily seen to be the following: 

Invariant Factors 

22 . 3
2 . 5 

2 . 32 0 5. 2 
22 0 3 ° 5, 3 

2 ° 3 . 5, 2 ° 3 

Abelian Groups 

Ztso 

Z90 x z2 
Z60 X Z3 

Z3o x Z6 

The process we carried out above was somewhat ad hoc, however it indicates that 
the determination of lists of invariant factors of all abelian groups of a given order n 

relies strongly on the factorization of n .  The following theorem (which we shall see 
is equivalent to the Fundamental Theorem in the case of finite abelian groups) gives a 
more systematic and computationally much faster way of determining all finite abelian 
groups of a given order. More specifically, if the factorization of n is 

a1 a2 ak n = P1 P2 · · · Pk • 
it shows that all permissible lists of invariant factors for abelian groups of order n may 
be determined by finding permissible lists for groups of order p�j for each i .  For a 
prime power, pa , we shall see that the problem of determining all permissible lists is 
equivalent to the determination of all partitions of a (and does not depend on p). 
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Theorem 5. Let G be an abelian group of order n > 1 and let the unique factorization 
of n into distinct prime powers be 

Then 

Ct) Ct2 01_ n = Pt Pz · · · Pk · 

(1) G � A t x Az x · · · x Ako where l A I = p�' 
(2) for each A E {A t , Az, . . .  , Ad with l A  I = pa , 

with fit :;:: fiz ::: · · · ::: fir ::: 1 and fit + fiz + · · · + fir = a (where t and 
fit , . . . , fir depend on i ) 

(3) the decomposition in ( 1 )  and (2) is unique, i.e., if G � Bt x Bz x · · · x Bm, 
with I B; I = p�' for all i ,  then B; � A; and B; and A; have the same invariant 
factors. 

Definition. The integers p/3j described in the preceding theorem are called the ele
mentary divisors of G. The description of G in Theorem 5( 1 )  and 5(2) is called the 
elementary divisor decomposition of G .  

The subgroups A ;  described i n  part ( 1 )  of the theorem ar e  the Sylow p; -subgroups 
of G. Thus ( 1) says that G is isomorphic to the direct product of its Sylow subgroups 
(note that they are normal - since G is abelian - hence unique). Part 1 is often referred 
to as The Primary Decomposition Theorem for finite abelian groups. 2 As with Theorem 
3, we shall prove this theorem later. 

Note that for p a prime, p/3 I pY if and only if fi :::=: y .  Furthermore, p/31 • • • p/3' = pa 
if and only if fit + · · · + fir = a. Thus the decomposition of A appearing in part 
(2) of Theorem 5 is the invariant factor decomposition of A with the "divisibility" 
conditions on the integers p/3j translated into "additive" conditions on their exponents. 
The elementary divisors of G are now seen to be the invariant factors of the Sylow 
p-subgroups as p runs over all prime divisors of G.  

By Theorem 5, in  order to find all abelian groups of order n = p�' p�2 • • •  p�k 
one must find for each i ,  1 :::=: i :::=: k, all possible lists of invariant factors for groups 
of order p�' . The set of elementary divisors of each abelian group is then obtained 
by taking one set of invariant factors from each of the k lists. The abelian groups are 
the direct products of the cyclic groups whose orders are the elementary divisors (and 
distinct lists of elementary divisors give non isomorphic groups). The advantage of this 
process over the one described following Theorem 2 is that it is easier to systematize 
how to obtain all possible lists of invariant factors, p/3' , pf3z , . . .  , p/3, , for a group of 
prime power order p/3 . Conditions ( 1 )  to (3) for invariant factors described earlier then 
become 

(1) fii :;:: 1 for all j E { 1 ,  2, . . .  , t} , 
(2) fi; ::: fii+t for all i ,  and 
(3) fit + fiz + · · · + fir = fi.  

2Recall that for abelian groups the Sylow p-subgroups are sometimes called the p-primary components. 
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Hence, each list of invariant factors in this case is simply a partition of fJ (ordered in 
descending order). In particular, the number of nonisomorphic abelian groups of order 
pfJ ( = the number of distinct lists) equals the number of partitions of fJ .  This number is 
independent of the prime p. For example the number of abelian groups of order p5 is 
obtained from the list of partitions of 5:  

Invariant Factors 

5 
4, 1 
3 , 2 

3, 1 , 1 
2, 2, 1 

2, 1 , 1 , 1 
1 , 1 , 1 ,  1 ,  1 

Abelian Groups 

Zp5 
Zp4 X Zp 
Zp3 X Zpz 

Zp3 X Zp X Zp 
Zp2 X Zpz X Zp 

Zpz X Zp X Zp X Zp 
Zp X Zp X Zp X Zp X Zp 

Thus there are precisely 7 nonisomorphic groups of order p5, the first in the list being 
the cyclic group, Z Ps ,  and the last in the list being the elementary abelian group, E Ps .  

If n = p� ' p�2 • • • p�• and q; is the number of partitions of a; , we see that the 
number of (distinct, nonisomorphic) abelian groups of order n equals q1q2 · • · qk . 

Example 

If n = 1800 = 233252 we list the abelian groups of this order as follows: 

Order pP Partitions of fJ 
3; 2. 1 ;  l '  1 '  1 

2; 1 ,  1 
2; 1 ,  1 

Abelian Groups 

Zs . Z4 x Z2 .  Z2 x Z2 x Z2 
Z9 , Z3 x Z3 
z25 ,  Z5 x z5 

We obtain the abelian groups of order 1800 by taking one abelian group from each of the 
three lists (right hand column above) and taking their direct product. Doing this in all 
possible ways gives all isomorphism types: 

� x � x �  � x � x � x � x �  
� x � x � x � � x � x � x � x � x � 
� x � x � x �  � x � x � x � x �  
� x � x � x � x �  � x � x � x � x � x � 
� x � x � x � � x � x � x � x � x � 
� x � x � x � x �  � x � x � x � x � x � x �. 

By the Fundamental Theorems above, this is a complete list of all abelian groups of order 
1800 - every abelian group of this order is isomorphic to precisely one of the groups 
above and no two of the groups in this list are isomorphic. 

We emphasize that the elementary divisors of G are not invariant factors of G (but 
invariant factors of subgroups of G). For instance, in case 1 above the elementary 
divisors 8, 9, 25 do not satisfy the divisibility criterion of a list of invariant factors. 
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Our next aim is to illustrate how to pass from a list of invariant factors of a finite 
abelian group to its list of elementary divisors and vice versa We show how to determine 
these invariants of the group no matter how it is given as a direct product of cyclic groups. 
We need the following proposition. 

Proposition 6. Let m ,  n E z+. 
(1) Zm x Zn � Zmn if and only if (m, n) = 1 .  
(2) If n = p�1 p�2 

· · · p�k then Zn � ZP71 x ZP;2 x · · · x ZP;k . 

Proof" Since (2) is an easy exercise using ( 1 ) and induction on k, we concentrate 
on proving (1 ). Let Zm = ( x ) , Zn = ( y )  and let I = l.c.m.(m,  n) . Note that I = mn 

if and only if (m , n) = 1 .  Let x0 yh be a typical element of Zm x Zn . Then (as noted 
in Example 1 ,  Section 1) 

(xa li = X fa ylb 

= 1° 1 b = 1 (because m I I  and n I I) . 
If (m , n) #- 1 ,  every element of Zm x Zn has order at most I, hence has order strictly 
less than mn, so Zm x Zn cannot be isomorphic to Zmn . 

Conversely, if (m , n) = 1 ,  then ixy i = l.c.m. ( lx l ,  ly l ) = mn . Thus, by order 
considerations, Zm x Zn = ( xy ) is cyclic, completing the proof. 

Obtaining Elementary Divisors from Invariant Factors 

Suppose G is given as an abelian group of type (n t ,  n2 , . . .  , n5 ) , that is 

G � Zn 1 X Zn2 X • • • X Zns• 

Let n = p�1 p�2 · · · p�k = n 1 n2 • • • n • .  Factor each n1 as 

n; = pfn pf'2 · · · pt'k , where f3iJ :::: 0. 

By the proposition above, 

for each i .  If f3iJ = 0, Z �ij = 1 and this factor may be deleted from the direct 
Pj 

product without changing the isomorphism type. Then the elementary divisors of G 
are precisely the integers 

� k R p1 , 1 :S j :S , 1 :S i :S s such that 1-'ii #- 0. 

For example, if I G I  = 2
3 · 32 · 52 

and G is of type (30, 30, 2), then 

G � Z3o X Z3o X z2. 

Since Z3o � z2 X z3 X Zs, G � z2 X z3 X Zs X z2 X z3 X Zs X z2. The elementary 
divisors of G are therefore 2, 3, 5, 2, 3, 5, 2, or, grouping like primes together (note that 
rearranging the order of the factors in a direct product does not affect the isomorphism 
type (Exercise 7 of Section 1 )), 2, 2, 2, 3, 3, 5, 5. In particular, G is isomorphic to 
the last group in the list in the example above. 
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If for each j one collects all the factors Z �'i together, the resulting direct product 
P, 

forms the Sylow Prsubgroup, Aj, of G.  Thus the Sylow 2-subgroup of the group in 
the preceding paragraph is isomorphic to Z2 x Z2 x Z2 (i.e., the elementary abelian 
group of order 8). 

Obtaining Elementary Divisors from any cyclic decomposition 

The same process described above will give the elementary divisors of a finite abelian 
group G whenever G is given as a direct product of cyclic groups (not just when the 
orders of the cyclic components are the invariant factors). For example, if G = Z6 x Z15 , 
the list 6, 15 is neither that of the invariant factors (the divisibility condition fails) nor 
that of elementary divisors (they are not prime powers). To find the elementary divisors, 
factor 6 = 2 · 3 and 15  = 3 · 5. Then the prime powers 2, 3, 3, 5 are the elementary 
divisors and 

Obtaining I nvariant Factors from Elementary Divisors 

Suppose G is an abelian group of order n, where n = p�1 p�2 · · · p�k and we are given 
the elementary divisors of G. The invariant factors of G are obtained by following these 
steps: 
(1) First group all elementary divisors which are powers of the same prime together. 

In this way we obtain k lists of integers (one for each Pj ) .  
(2) In each of these k lists arrange the integers in nonincreasing order. 
(3) Among these k lists suppose that the longest (i.e., the one with the most terms) con

sists of t integers. Make each of the k lists of length t by appending an appropriate 
number of 1 's at the end of each list. 

(4) For each i E { 1 ,  2, . . . , t} the ; th invariant factor, n; , is obtained by taking the 
product of the i1h integer in each of the t (ordered) lists. 

The point of ordering the lists in this way is to ensure that we have the divisibility 
condition »i+l I n; . 

Suppose, for example, that the elementary divisors of G are given as 2, 3, 2, 25, 3, 
2 (so I G I = 23 

· 32 
· 52 ) . Regrouping and increasing each list to have 3 (= t) members 

gives: 
p = 2 

2 
2 
2 

3 
3 
1 

p = 5 
25 
1 
1 

so the invariant factors of G are 2 · 3 · 25 , 2 · 3 · 1 ,  2 · l · 1 and 

G ::;:: ZlsO X z6 X Zz.  
Note that this is  the penultimate group in  the list classifying abelian groups of order 
1 800 computed above. 

The invariant factor decompositions of the abelian groups of order 1800 are as 
follows, where the i 1h group in this list is isomorphic to the ;th group computed in the 
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previous list: 
Ztsoo 
z360 X Zs 
Z60o X z3 
Z12o x Zts 
Z9oo x Zz 
Z1so x Z10 

Z3oO X z6 
Z6o x Z3o 
z450 X Zz X Zz 
Z9o x Z10 x Zz 
Ztso X z6 X Zz 
z30 X Z3o X Zz . 

Using the uniqueness statements of the Fundamental Theorems 3 and 5, we can use 
these processes to determine whether any two direct products of finite cyclic groups are 
isomorphic. For instance, if one wanted to know whether z6 X Zts � Zw X z9. first 
determine whether they have the same order (both are of order 90) and then (the easiest 
way in general) determine whether they have the same elementary divisors: 

z6 X Zts has elementary divisors 2, 3, 3, 5 and is isomorphic to Zz X z3 X z3 X Zs 
Zw X z9 has elementary divisors 2, 5, 9 and is isomorphic to Zz X Zs X Z9 . 

The lists of elementary divisors are different so (by Theorem 5) they are not isomorphic. 
Note that z6 X Zts has no element of order 9 whereas Zw X z9 does (cf. Exercise 5). 

The processes we described above (with some elaboration) form a proof (via Propo
sition 6) that for finite abelian groups Theorems 3 and 5 are equivalent (i.e., one implies 
the other). We leave the details to the reader. 

One can now better understand some of the power and some of the limitations of 
classification theorems. On one hand, given any positive integer n one can explicitly 
describe all abelian groups of order n, a significant achievement. On the other hand, 
the amount of information necessary to determine which of the isomorphism types of 
groups of order n a particular group belongs to may be considerable (and is large if n 
is divisible by large powers of primes). 

We close this section with some terminology which will be useful in later sections. 

Definition. 
(1) If G is a finite abelian group of type (n 1 , nz , . . . , n1) , the integer t is called the 

rank of G (the free rank of G is 0 so there will be no confusion). 
(2) If G is any group, the exponent of G is the smallest positive integer n such that 

xn = 1 for all x E G (if no such integer exists the exponent of G is oo ). 

E X E R C I S E S 

1. In each of parts (a) to (e) give the number of nonisomorphic abelian groups of the specified 
order - do not list the groups: (a) order 100, (b) order 576, (c) order 1 155, (d) order 
42875, (e) order 2704. 

2. In each of parts (a) to (c) give the lists of invariant factors for all abelian groups of the 
specified order: 
(a) order 270, (b) order 9801, (c) order 320, (d) order 105, (e) order 44100. 

3. In each of parts (a) to (e) give the lists of elementary divisors for all abelian groups of the 
specified order and then match each list with the corresponding list of invariant factors 
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found in the preceding exercise: 
(a) order 270, (b) order 9801 ,  (c) order 320, (d) order 105, (e) order 44100. 

4. In each of parts (a) to (d) determine which pairs of abelian groups listed are isomorphic 
(here the expression {at , a2 , . . . , ak } denotes the abelian group Za1 x Za2 x · · · x Zak) .  
(a) {4 , 9}, {6 , 6} ,  {8 , 3 }, {9 , 4} , {6 , 4}, {64} . 
(b) {22 ' 2 . 32} , {22 . 3 ' 2 . 3}, {23 . 32 }, {22 . 32 ' 2}. 
(c) {52 · 72 , 32 • 5 · 7} , {32 · 52 · 7 , 5 · 72} , {3 · 52 , 72 , 3 · 5 · 7}, 

{52 . 7 ' 32 . 5 ' 72} .  
(d) {22 . 5 . 7 '  23 . 53 ' 2 .  52} ,  {23 . 53 . 7 '  23 • 53 } , {22 ' 2 .  7 '  23 ' 53 ' 53 }, 

{2 . 53 , 22 . 53 ' 23 ' 7} .  

5.  Let G be a finite abelian group of type (n t ,  n2 , . . .  , n1 ) .  Prove that G contains an element 
of order m if and only if m I n l · Deduce that G is of exponent n l · 

6. Prove that any finite group has a finite exponent. Give an example of an infinite group with 
finite exponent. Does a finite group of exponent m always contain an element of order m? 

7. Let p be a prime and let A = ( x t ) x ( x2 ) x · · · x ( xn )  be an abelian p-group, where 
lx; l = pa' > 1 for all i .  Define the p

th
-power map 

by (/) : X  1---+ xP . 

(a) Prove that ({) is a homomorphism. 
(b) Describe the image and kernel of ({) in terms of the given generators. 
(c) Prove both ker ({) and A jim ({) have rank n (i.e. , have the same rank as A) and prove 

these groups are both isomorphic to the elementary abelian group, E P" , of order pn . 

8. Let A be a finite abelian group (written multiplicatively) and let p be a prime. Let 

AP = (aP I a E A} and Ap = {x I  xP = 1 }  

(so AP and A p  are the image and kernel of the p
th-power map, respectively). 

(a) Prove that A/ AP :;:;: Ap. [Show that they are both elementary abelian and they have 
the same order.] 

(b) Prove that the number of subgroups of A of order p equals the number of subgroups 
of A of index p. [Reduce to the case where A is an elementary abelian p-group .] 

9. Let A = Z6o x Z45 x Z 12 x Z36· Find the number of elements of order 2 and the number 
of subgroups of index 2 in A. 

10. Let n and k be positive integers and let A be the free abelian group of rank n (written 
additively). Prove that Af kA is isomorphic to the direct product of n copies of 7lf k7l 
(here kA = {ka I a E A}). [See Exercise 14, Section 1 .] 

11. Let G be a nontrivial finite abelian group of rank t .  
(a) Prove that the rank of  G equals the maximum of the ranks of  its Sylow subgroups. 
(b) Prove that G can be generated by t elements but no subset with fewer than t elements 

generates G. [One way of doing this is by using part (a) together with Exercise 7.] 
12. Let n and m be positive integers with d = (n, m). Let Zn = ( x ) and Zm = ( y ) . Let A 

be the central product of ( x ) and ( y ) with an element of order d identified, which has 

presentation ( x , y I x
n 

= ym = 1 , xy = yx, x � = y ';f ) . Describe A as a direct product 
of two cyclic groups. 

13. Let A = ( x1 ) x · · · x ( Xr ) be a finite abelian group with lx; l = n; for l ::::; i ::::; r. 

Find a presentation for A. Prove that if G is any group containing commuting elements 
El , . . .  , Er such that g�' = l for 1 ::::; i ::::: r, then there is a unique homomorphism from A 
to G which sends x; to g; for all i .  
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14. For any group G define the dual group of G (denoted G) to be the set of all homomorphisms 
from G into the multiplicative group of roots of unity in C. Define a group operation in 
G by pointwise multiplication of functions: if x ,  l/1 are homomorphisms from G into the 
group of roots of unity then x l/1  is the homomorphism given by (X l/l)(g) = x (g) l/f(g) for 
all g E G, where the latter multiplication takes place in C. 
(a) Show that this operation on G makes G into an abelian group. [Show that the identity 

is the map g r+ 1 for all g E G and the inverse of x E G is the map g r+ x (g)-1 .] 
(b) If G is a finite abelian group, prove that G � G. [Write G as ( x1 } x · · · x ( Xr } and 

if n; = ix; I define Xi to be the homomorphism which sends x; to e2rri/n; and sends 
Xj to 1, for all j # i. Prove Xi has order n; in G and G = ( XI } x · · · x ( Xr } .] 

(This result is often phrased: a finite abelian group is self-dual. It implies that the lattice 
diagram of a finite abelian group is the same when it is turned upside down. Note however 
that there is no natural isomorphism between G and its dual (the isomorphism depends on 
a choice of a set of generators for G). This is frequently stated in the form: a finite abelian 
group is noncanonically isomorphic to its dual.) 

15. Let G = ( x } x ( y } where lx l  = 8 and I Y I  = 4. 
(a) Find all pairs a, b in G such that G = ( a }  x ( b }  (where a and b are expressed in 

terms of x and y). 
(b) Let H = ( x2y , y2 } � z4 X z2 . Prove that there are no elements a, b of G such that 

G = ( a  } x ( b }  and H = ( a2 } x ( b2 } (i.e., one cannot pick direct product generators 
for G in such a way that some powers of these are direct product generators for H). 

16. Prove that no finitely generated abelian group is divisible (cf. Exercise 19, Section 2.4). 

5.3 TABLE OF GROUPS OF SMALL ORDER 

At this point we can give a table of the isomorphism types for most of the groups of 
small order. 

Each of the unfamiliar non-abelian groups in the table on the following page will 
be constructed in Section 5 on semidirect products (which will also explain the notation 
used for them). For the present we give generators and relations for each of them (i.e., 
presentations of them). 

The group z3 )<1 z4 of order 12 can be described by the generators and relations: 

( x , y I x
4 = l = 1 ,  x-1 yx = y- 1 ) , 

namely, it has a normal Sylow 3-subgroup ( ( y ) ) which is inverted by an element of 
order 4 (x) acting by conjugation (x2 centralizes y). 

The group (Z3 X Z3) )<1 z2 has generators and relations: 

( I 2 3 3 1 -1 -1 I -1 ) X,  y , Z X = y = Z = , yz = zy, X yx = Y , X- ZX = Z , 

namely, it has a normal Sylow 3-subgroup isomorphic to Z3 x Z3 ( { y, z ) ) inverted by 
an element of order 2 (x) acting by conjugation. 

The group Zs >1 Z4 of order 20 has generators and relations: 

{ x , Y I x
4 

= l = 1 , x -1 yx = y-1 ) , 

namely, it has a normal Sylow 5-subgroup ( { y )) which is inverted by an element of 
order 4 (x) acting by conjugation (x2 centralizes y ) .  
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7 1 z1 none 

8 5 Zs , z4 X Zz, 
Ds, Qs Zz x Zz x Zz 

9 2 Z9 , z3 x Z3 none 
10  2 Zw Dw 
1 1  1 Zn none 
12  5 Ztz. z6 X Zz A4, D1z .  Z3 )<J z4 
1 3  1 zl3 none 
14 2 Z14 D14 
1 5 1 Z1s none 

zl6· Zs X Zz,  
1 6  14 z4 X Z4, z4 X Zz X Zz, not listed 

Zz x Zz x Zz x Zz 

1 7  1 Zn none 

1 8  5 Z1s . z6 x Z3 Dis. s3 X ZJ , 
(Z3 x Z3) ><J Zz 

1 9 1 Z19 none 

20 5 Z20, Z10 x Z2 
Dzo 

Zs ><J Z4, Fzo 

The group F20 of order 20 has generators and relations: 

( I 4 5 1 -1  2
) x , y x = y = , xyx = y , 

unely, it has a normal Sylow 5-subgroup ( ( y ) ) which is squared by an element of order 
(x) acting by conjugation. One can check that this group occurs as the normalizer of 
Sylow 5-subgroup in S5 , e.g., 

Fzo =  ( (2 3 5 4) , ( 1 2 3 4 5) ) . 

his group is called the Frobenius group of order 20. 
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E X E R C I S E  

1. Prove that Dt6. Z2 x Ds, Z2 x Qs, Z4 * Ds, QD16 and M are nonisomorphic non-abelian 
groups of order 16 (where Z4 * Ds is described in Exercise 12, Section 1 and QD16 and 
M are described in the exercises in Section 2.5). 

5.4 RECOGNIZING D IRECT PRODUCTS 

So far we have seen that direct products may be used to both construct "larger" groups 
from "smaller'' ones and to decompose finitely generated abelian groups into cyclic 
factors. Even certain non-abelian groups, which may be given in some other form, may 
be decomposed as direct products of smaller groups. The purpose of this section is 
to indicate a criterion to recognize when a group is the direct product of some of its 
subgroups and to illustrate the criterion with some examples. 

Before doing so we introduce some standard notation and elementary results on 
commutators which will streamline the presentation and which will be used again in 
Chapter 6 when we consider nilpotent groups. 

Definition. Let G be a group, let x , y E G and let A, B be nonempty subsets of G. 
(1) Define [x , y] = x-1 y-1 xy, called the commutator of x and y .  
(2) Define [A , B] = { [a ,  b] I a E A ,  b E B ) , the group generated by commuta

tors of elements from A and from B.  

(3) Define G' = { [x , y]  I x , y E G ) , the subgroup of G generated by commutators 
of elements from G, called the commutator subgroup of G.  

The commutator of x and y i s  1 if and only if x and y commute, which explains 
the terminology. The following proposition shows how commutators measure the "dif
ference" in G between xy and yx . 

Proposition 7. Let G be a group, let x , y E G and let H .:=: G. Then 
(1) xy = yx [x , y] (in particular, xy = yx if and only if [x , y] = 1 ). 
(2) H � G if and only if [H, G] .:S H. 
(3) a [x , y] = [a (x) , a (y)] for any automorphism a of G, G'  char G and GI G' is 

abelian. 
(4) GIG' is the largest abelian quotient of G in the sense that if H � G and G 1 H 

is abelian, then G' .:=: H. Conversely, if G' .:=: H, then H � G and G I H is 
abelian. 

(5) If ({J : G ---+ A is any homomorphism of G into an abelian group A, then ({J 
factors through G' i.e., G' .:=: ker ({J and the following diagram commutes: 

G GI G' �j A 

Proof: ( 1 )  This is immediate from the definition of [x , y] .  
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(2) By definition, H � G if and only if g-1hg E H for all g E G and all h E H .  
For h E H, g-1 hg E H if and only if h-1 g- 1 hg E H ,  so that H � G if and only if 
[h , g] E H for all h E H and all g E G. Thus H � G if and only if [H, G] :::: H, 
which is (2). 

(3) Let a E Aut( G) be an automorphism of G and let x, y E G. Then 

a ([x, y]) = a (x-1 y- 1xy) 

= a (x)-1a(y)-1 a (x)a (y) 

= [a (x) , a (y)] .  

Thus for every commutator [x , y] of  G', a ([x , y ] )  i s  again a commutator. Since a has 
a 2-sided inverse, it follows that it maps the set of commutators bijectively onto itself. 
Since the commutators are a generating set for G', a (G') = G', that is, G' char G. 

To see that GI G' is  abelian, let xG' and yG' be arbitrary elements of GI G' . By 
definition of the group operation in GI G' and since [x , y] E G' we have 

(xG')(yG') = (xy)G' 

= (yx [x ,  y]) G' 

= (yx)G' = (y G') (xG') ,  

which completes the proof of (3). 
(4) Suppose H � G and Gl H is abelian. Then for all x,  y E G we have 

(xH)(y H) = (y H)(xH), so 

l H = (xH)-1 (y H)-1 (xH)(y H) 

= x-1y-1xy H  

= [x , y]H. 

Thus [x , y] E H for all x,  y E G, so that G' :::: H. 
Conversely, if G' :::: H, then since GIG' is abelian by (3), every subgroup of GIG' 

is normal. In particular, HI G' � GI G'. By the Lattice Isomorphism Theorem H � G. 
By the Third Isomorphism Theorem 

GIH � (GIG')I(HIG') 

hence G I H is abelian (being isomorphic to a quotient of the abelian group GI G'). This 
proves (4). 

(5) This is (4) phrased in terms of homomorphisms. 

Passing to the quotient by the commutator subgroup of G collapses all commutators 
to the identity so that all elements in the quotient group commute. As (4) indicates, a 
strong converse to this also holds: a quotient of G by H is abelian if and only if the 
commutator subgroup is contained in H (i.e., if and only if G' is mapped to the identity 
in the quotient G I H). 

We shall exhibit a group (of order 96) in the next section with the property that one 
of the elements of its commutator subgroup cannot be written as a single commutator 
[ x ,  y] for any x and y.  Thus G' does not necessarily consist only of the set of (single) 
commutators (but is the group generated by these elements). 
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Examples 

(1) A group G is abelian if and only if G' = 1 .  
(2) Sometimes it is possible to compute the commutator subgroup of a group without 

actually calculating commutators explicitly. For instance, if G = Ds , then since 
Z(Ds) = ( r2 ) � Ds and Ds/Z(Ds) is abelian (the Klein 4-group), the commutator 
subgroup D� is a subgroup of Z(Ds) .  Since Ds is not itself abelian its commutator 
subgroup is nontrivial. The only possibility is thar D� = Z(Dg).  By a similar 
argument, Q� = Z(Qs) = ( - 1  ) . More generally, if G is any non-abelian group of 
order p3 , where p is a prime, G' = Z(G) and I G' I  = p (Exercise 7). 

(3) Let D2n = ( r, s  I rn = s2 = 1 , s-1 rs = r-1 ) . Since [r, s] = r-2, we have 
( r-2 ) = ( r2 ) � Dzn . Furthermore, ( r2 ) � D2n and the images of r and s in 
Dzn f ( r2 ) generate this quotient. They are commuting elements of order � 2, so the 
quotient is abelian and Dzn � ( r2 ) . Thus Dzn = ( r2 ) . Finally, note that if n (= l r l )  
i s  odd, ( r2 ) = ( r )  whereas if  n i s  even, ( r2 ) i s  of index 2 in  ( r ) . Hence D2n i s  of 
index 2 or 4 in Dzn according to whether n is odd or even, respectively. 

( 4) Since conjugation by g E G is an automorphism of G, [ ag , b.'.' ] = [a , b ]g for all a ,  b E 
G by (3) of the proposition, i.e., conjugates of commutators are also commutators. 
For example, once we exhibit an element of one cycle type in Sn as a commutator, 
every element of the same cycle type is also a commutator (cf. Section 4.3) . For 
example, every 5-cycle is a commurator in Ss as follows: labelling the vertices of a 
pentagon as 1 ,  . . . , 5 we see that Dw � Ss (a subgroup of As in fact). By the preceding 
example an element of order 5 is a commutator in Dw, hence also in Ss . Explicitly, 
( 1 4 2 5  3) = [(1 2 3 4 5) , (2 5) (4 3)]. 

The next result actually follows from the proof of Proposition 3 . 13  but we isolate 
it explicitly for reference: 

Proposition 8. Let H and K be subgroups of the group G. The number of distinct 
ways of writing each element of the set H K in the form hk, for some h E H and k E K 
is I H  n K l .  In particular, if H n K = 1 ,  then each element of H K can be written 
uniquely as a product hk, for some h E H and k E K .  

Proof" Exercise. 

The main result of this section is the following recognition theorem. 

Theorem 9. Suppose G is a group with subgroups H and K such that 

(1) H and K are normal in G, and 
(2) H n K = 1 .  

Then H K  � H x K .  

Proof" Observe that by hypothesis ( 1 ), H K is a subgroup of G (see Corollary 3. 1 5). 
Let h E H and let k E K. Since H � G, k-1 hk E H, so that h- 1 (k-1 hk) E H. 
Similarly, (h -1 k-1h)k E K. Since H n K = 1 it follows that h - 1 k -1 hk = 1, i.e. , 
hk = kh so that every element of H commutes with every element of K. 
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By the preceding proposition each element of H K can be written uniquely as a 
product hk, with h E H and k E K. Thus the map 

q; : H K __,. H x K  

hk I-+ (h ,  k) 

is well defined. To see that q; is a homomorphism note that if h 1 ,  h2 E H and k1 ,  k2 E K, 
then we have seen that h2 and k1 commute. Thus 

(h tkt ) (hzkz) = (h t hz) (kt kz) 

and the latter product is the unique way of writing (h 1 k1 ) (hzkz) in the form hk with 
h E H and k E K .  This shows that 

q; (h t kt hzkz) = q; (h t hzkt kz) 

= (h t hz , ktkz) 

= (h t , kt ) (hz , kz) = q; (h t kt )q; (hzkz)  

so that q; is  a homomorphism. The homomorphism q; is a bijection since the represen
tation of each element of H K as a product of the form hk is unique, which proves that 

q; is an isomorphism. 

Definition. If G is a group and H and K are normal subgroups of G with H n K = 1 ,  
we call H K the internal direct product of H and K. We shall (when emphasis is called 
for) call H x K the external direct product of H and K .  

The distinction between internal and external direct product i s  (by Theorem 9) 
purely notational: the elements of the internal direct product are written in the form 
hk, whereas those of the external direct product are written as ordered pairs (h , k) . We 
have in previous instances passed between these. For example, when Zn = { a  } and 
Zm = { b }  we wrote x = (a, 1 )  and y = ( 1 ,  b) so that every element of Zn x Zm was 
written in the form xr 

y
s
. 

Examples 

(1) If n is a positive odd integer, we show D4n � Dzn x Zz . To see this let 

D4n = ( r, s  I r2n = s2 = 1 ,  srs = r-l } 

be the usual presentation of D4n . Let H = ( s, r2 } and let K = ( rn } . Geometrically, 
if D4n is the group of symmetries of a regular 2n-gon, H is the group of symmetries of 
the regular n-gon inscribed in the 2n-gon by joining vertex 2i to vertex 2i + 2, for all 
i mod 2n (and if one lets TJ = r2 , H has the usual presentation of the dihedral group 
of order 2n with generators TJ and s). Note that H :'9 D4n (it has index 2). Since 
lr I = 2n, l rn I = 2. Since sr s = r - l ,  we have srn s = r -n = rn, that is, s centralizes 
rn . Since clearly r centralizes rn , K ::::; Z(D4n) .  Thus K :'9 D4n . Finally, K 1:. H 
since r2 has odd order (or because rn sends vertex i into vertex i + n, hence does 
not preserve the set of even vertices of the 2n-gon). Thus H n K = 1 by Lagrange. 
Theorem 9 now completes the proof. 

(2) Let I be a subset of { 1 , 2, . . .  , n} and let G be the setwise stabilizer of I in Sn , i.e., 
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Let J = { 1 ,  2, . . .  , n} - I be the complement of I and note that G is also the setwise 
stabilizer of J .  Let H be the pointwise stabilizer of I and let K be the pointwise 
stabilizer of { 1 ,  2, . . . , n} - I, i .e., 

H = {a E G I a (i) = i for all i E I } 

K = {T E G I r (j) = j for all j E J}.  

It is easy to see that H and K are normal subgroups of G (in fact they are kernels of 
the actions of G on I and J, respectively). Since any element of H n K fixes all of 
{ 1 ,  2, . . .  , n} ,  we have H n K = 1 . Finally, since every element a of G stabilizes the 
sets I and J,  each cycle in the cycle decomposition of a involves only elements of I 
or only elements of J. Thus a may be written as a product a1a J ,  where a1 E H and 
a 1 E K .  This proves G = H K. By Theorem 9, G � H x K.  Now any permutation 
of J can be extended to a permutation in Sn by letting it act as the identity on I .  
These are precisely the permutations in H (and similarly the permutations in K are 
the permutations of I which are the identity on J), so 

H � Sj K � sf and G � Sm X Sn-m . 

where m = 1 1 1  (and, by convention, s0 = 1) .  
(3) Let a E Sn and let I be the subset of { 1 ,  2, . . .  , n} fixed pointwise by a: 

I =  {i E {1 ,  2, . . . , n}  I a (i) = i } .  

If C = Cs" (a), then by Exercise 18  of Section 4.3,  C stabilizes the set I and its 
complement J. By the preceding example, C is isomorphic to a subgroup of H x K, 
where H is the subgroup of all permutations in Sn fixing I pointwise and K is the set 
of all permutations fixing J pointwise. Note that a E H. Thus each element, a, of C 
can be written (uniquely) as a = a1a1 , for some a1 E H and a1 E K.  Note further 
that if T is any permutation of { 1 ,  2, . . .  , n} which fixes each j E J (i.e., any element 
of K), then a and T commute (since they move no common integers). Thus C contains 
all such T ,  i .e., C contains the subgroup K. This proves that the group C consists of 
all elements a1a1 E H x K such that a1 is arbitrary in K and a1 commutes with a 
in H: 

Cs, (a) = CH (a) x K 

� Cs1 (a) x S1 . 

In particular, if a is an m-cycle in Sn , 

Csn (a) = ( a }  X Sn-m · 

The latter group has order m(n - m) !, as computed in Section 4.3. 

E X E R C I S E S 

Let G be a group. 

1. Prove that if x ,  y E G then [y, x] = [x , y]-1 . Deduce that for any subsets A and B of G, 
[A , B] = [B, A] (recall that [A ,  B] is the subgroup of G generated by the commutators 
[a , b]). 

2. Prove that a subgroup H of G is normal if and only if [ G, H] � H. 

3. Let a , b, c E G. Prove that 
(a) [a , be] =  [a , c](c-1 [a , b]c) 
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(b) [ab, c] = (b-1 [a, c]b) [b, c]. 

4. Find the commutator subgroups of S4 and A4. 

5. Prove that An is the commutator subgroup of Sn for all n :::: 5. 

6. Exhibit a representative of each cycle type of As as a commutator in Ss . 

7. Prove that if p is a prime and P is a non-abelian group of order p
3 

then P' = Z(P). 

8. Assume x ,  y E G and both x and y commute with [x ,  y] . Prove that for all n E z+, 
n (n- l )  

(xy)n = xn yn [y , x] -2 - . 

9. Prove that if p is an odd prime and P is a group of order p
3 

then the p1h 
power map 

x � xP is a homomorphism of P into Z(P).  If P is not cyclic, show that the kernel of the 
p1h 

power map has order p2 or p
3

. Is the squaring map a homomorphism in non-abelian 
groups of order 8? Where is the oddness of p needed in the above proof? [Use Exercise 8.] 

10. Prove that a finite abelian group is the direct product of its Sylow subgroups. 

11. Prove that if G = H K where H and K are characteristic subgroups of G with H n K = 1 
then Aut( G) � Aut(H) x Aut(K). Deduce that if G is an abelian group of finite order 
then Aut( G) is isomorphic to the direct product of the automorphism groups of its Sylow 
subgroups. 

12. Use Theorem 4. 17 to describe the automorphism group of a finite cyclic group. 

13. Prove that Dsn is not isomorphic to D4n x Zz. 

14. Let G = { (a;j ) E GLn (F) I aij = O if i > j, and au = a22 = · · ·  = ann l . where F is 
a field, be the group of upper triangular matrices all of whose diagonal entries are equal. 
Prove that G � D x U, where D is the group of all nonzero multiples of the identity 
matrix and U is the group of upper triangular matrices with 1 's down the diagonal. 

15. If A and B are normal subgroups of G such that G I A and G 1 B are both abelian, prove 
that GI(A n B) is abelian. 

16. Prove that if K is a normal subgroup of G then K' :Sl G. 

17. If K is a normal subgroup of G and K is cyclic, prove that G' ::::; Cc (K). [Recall that the 
automorphism group of a cyclic group is abelian. ]  

18. Let Kt , Kz, . . .  , Kn be non-abelian simple groups and let G = Kt x Kz x · · · x Kn . 
Prove that every normal subgroup of G is of the form G 1 for some subset I of { 1 ,  2, . . .  , n }  
(where G 1 i s  defined i n  Exercise 2 of Section 1 ). [If N :Sl G and x = (at , . . .  , an) E N 
with some a; -:f. 1 ,  then show that there is some g; E G; not commuting with a; . Show 
[( 1 , . . .  , g; , . . . , 1) ,  x] E K; n N and deduce K; ::::; N.] 

19. A group H is called perfect if H' = H (i.e., H equals its own commutator subgroup). 
(a) Prove that every non-abelian simple group is perfect. 
(b) Prove that if H and K are perfect subgroups of a group G then ( H, K }  is also perfect. 

Extend this to show that the subgroup of G generated by any collection of perfect 
subgroups is perfect. 

(c) Prove that any conjugate of a perfect subgroup is perfect. 
(d) Prove that any group G has a unique maximal perfect subgroup and that this subgroup 

is normal. 

20. Let H(F) be the Heisenberg group over the field F, cf. Exercise 1 1  of Section 1 .4. Find 
an explicit formula for the commutator [X, Y], where X, Y E H(F), and show that the 
commutator subgroup of H(F) equals the center of H(F) (cf. Section 2.2, Exercise 14). 
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5. 5 SEM IDIRECT PRODUCTS 

In this section we study the "semidirect product" of two groups H and K,  which is a 
generalization of the notion of the direct product of H and K obtained by relaxing the 
requirement that both H and K be normal. This construction will enable us (in certain 
circumstances) to build a "larger" group from the groups H and K in such a way that 
G contains subgroups isomorphic to H and K,  respectively, as in the case of direct 
products. In this case the subgroup H will be normal in G but the subgroup K will not 
necessarily be normal (as it is for direct products). Thus, for instance, we shall be able 
to construct non-abelian groups even if H and K are abelian. This construction will 
allow us to enlarge considerably the set of examples of groups at our disposal. As in 
the preceding section, we shall then prove a recognition theorem that will enable us to 
decompose some familiar groups into smaller "factors," from which we shall be able to 
derive some classification theorems. 

By way of motivation suppose we already have a group G containing subgroups H 
and K such that 

(a) H ::9 G (but K is not necessarily normal in G), and 
(b) H n K = 1 .  

It is still true that H K is a subgroup of G (Corollary 3 . 15) and, by Proposition 8, 
every element of H K can be written uniquely as a product hk, for some h E H and 
k E K,  i.e., there is a bijection between H K and the collection of ordered pairs (h , k ),  
given by hk !---')- (h , k) (so the group H appears as the set of elements (h , 1 )  and K 
appears as the set of elements { 1 ,  k)). Given two elements h1k1 and hzkz of H K, we 
first see how to write their product (in G) in the same form: 

(h tkd(hzkz) = htkthz(k[1ki )kz 
= ht (kthzk11 )ktkz 
= h3kJ , 

(5 . 1 )  

where h3 = h t (kthzk[ 1) and k3 = ktkz . Note that since H ::9 G, kthzk11 E H, so 
h3 E H and k3 E K .  

These calculations were predicated on the assumption that there already existed a 
group G containing subgroups H and K with H <:::] G and H n K = 1 .  The basic 
idea of the semidirect product is to tum this construction around, namely start with two 
(abstract) groups H and K and try to define a group containing (an isomorphic copy 
of) them in such a way that (a) and (b) above hold. To do this, we write equation ( 1 ), 
which defines the multiplication of elements in our group, in a way that makes sense 
even if we do not already know there is a group containing H and K as above. The 
point is that k3 in equation ( 1 )  is obtained only from multiplication in K (namely ktkz) 
and h3 is obtained from multiplying h 1 and k1hzk11 in H. If we can understand where 

the element k1 h2k]1 arises (in terms of H and K and without reference to G), then the 
group H K will have been described entirely in terms of H and K. We can then use 
this description to define the group H K using equation ( 1 )  to define the multiplication. 
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Since H is normal in G, the group K acts on H by conjugation: 

k · h = khk-1 for h E H, k E K 

(we use the symbol · to empli;�iz� �
,
tion) so that (1) can be written 

(h 1k1 ) (h2k2) �(h 1 k1 · h2) (k1k2)· (5 .2) 

The action of K on H by conjugation gives a homomorphism (/J of K into Aut( H), so 
(2) shows that the multiplication in H K depends only on the multiplication in H, the 
multiplication in K and the homomorphism (/J, hence is defined intrinsically in terms 
of H and K .  

We now use this interpretation to define a group given two groups H and K and a 
homomorphism lfJ from K to Aut( H) (which will tum out to define conjugation in the 
resulting group). 

Theorem 10. Let H and K be groups and let (/J be a homomorphism from K into 
Aut(H). Let · denote the (left) action of K on H determined by f/J· Let G be the set of 
ordered pairs (h , k) with h E H and k E K and define the following multiplication on 
G: 

(h 1 , k1) (h2 ,  k2) = (ht kt · h2 '  k1k2). 

(1) This multiplication makes G into a group of order I G I = I H I I  K 1 . 
(2) The sets { (h ,  1 )  I h E H} and { ( 1 ,  k) I k E K} are subgroups of G and the 

maps h � (h , 1 )  for h E H and k � (1 , k) for k E K are isomorphisms of 
these subgroups with the groups H and K respectively: 

H � { (h , 1 )  I h E H} and K � { ( 1 , k) I k E  K}. 

Identifying H and K with their isomorphic copies in G described in (2) we have 
(3) H � G 
(4) H n K = 1 
(5) for all h E H and k E K, khk-1  = k · h  = ({J(k) (h) . 

Proof" It is straightforward to check that G is a group under this multiplication 
using the fact that · is an action of K on H. For example, the associative law is verified 
as follows: 

((a , x)(b, y)) (c, z) = (a x · h , xy)(c, z) 
= (a x · b  (xy) · c , xyz) 
= (a x · b  x · (y · c) , xyz) 
= (a x · (b y · c) , xyz) 
= (a, x)(b y · c , yz) 
= (a , x) ((b, y) (c, z)) 

for all (a , x), (b, y), (c, z) E G. We leave as an exercise the verification that ( 1 , 1 )  is 
the identity of G and that 
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for each (h , k) E G. The order of the group G is clearly the product of the orders of H 
and K, which proves ( 1  ) . 

Let H = { (h, 1 ) I h E H } and K = { ( 1 , k) I k E  K }. We have 

(a , 1 ) (b, 1 )  = (a 1 · b ,  1 ) = (ab, 1 ) 

for all a, b E H and 
( 1 , x) ( l ,  y) = ( 1 ,  xy) 

for all x, y E K, which show that H and K are subgroups of G and that the maps in 
(2) are isomorphisms. 

It is clear that H n K = 1 ,  which is (4). Now, 

(1 , k)(h, 1 ) ( 1 , k)-
1 = (0 . k)(h, 1 )) ( 1 , k-1 ) 

= (k · h ' k) (l . k-1 ) 

= (k · h  k · 1 ' kk- 1 ) 

= (k ·h ,  1) 
so that identifying (h , 1 )  with h and (1 , k) with k by the isomorphisms in (2) we have 
khk- 1 = k ·h, which is (5). 

Finally, we have just seen that (under the identifications in (2)) K :::=: Nc (H). Since 
G = H K and certainly H :::=: Nc (H), we have Nc (H) = G, i.e., H � G, which 
proves (3) and completes the proof. 

Definition. Let H and K be groups and let cp be a homomorphism from K into Aut( H). 
The group described in Theorem 10 is called the semidirect product of H and K with 
respect to cp and will be denoted by H ><l 9  K (when there is no danger of confusion we 
shall simply write H ><l K). 

The notation is chosen to remind us that the copy of H in H ><l K is the normal 
"factor'' and that the construction of a sernidirect product is not symmetric in H and 
K (unlike that of a direct product). Before giving some examples we clarify exactly 
when the sernidirect product of H and K is their direct product (in particular, we see 
that direct products are a special case of sernidirect products). See also Exercise 1 .  

Proposition 1 1. Let H and K be groups and let cp : K � Aut( H) be a homomorphism. 
Then the following are equivalent: 

(1) the identity (set) map between H ><l K and H x K is a group homomorphism 
(hence an isomorphism) 

(2) cp is the trivial homomorphism from K into Aut( H) 
(3) K � H ><l K . 

Proof: ( 1 ) => (2) By definition of the group operation in H ><l K 

(h l , kt ) (h2 . k2) = (h t kt ·h2 , ktk2) 

for all h 1 , h2 E H and k1 , k2 E K. By assumption ( I ) , (h t , kt ) (h2, k2) = (h t h2 , ktk2) .  
Equating the first factors of these ordered pairs gives k1 ·h2 = h2 for all h2 E H and all 
k1 E K, i.e., K acts trivially on H. This is (2). 
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(2) => (3) If ({J is trivial, then the action of K on H is trivial, so that the elements of 
H commute with those of K by Theorem 10(5). In particular, H normalizes K. Since 
K normalizes itself, G = H K normalizes K, which is (3). 

(3) => (1) If K is normal in H ><1 K then (as in the proof of Theorem 9) for all 
h E H and k E K, [h , k] E H n K = 1 .  Thus hk = kh and the action of K on H 
is trivial. The multiplication in the semidirect product is then the same as that in the 
direct product: 

for all h 1 , h2 E H and kt . k2 E K. This gives (1)  and completes the proof. 

Examples 

In all examples H and K are groups and 9 is a homomorphism from K into Aut (H) with 
associated action of K on H denoted by a dot. Let G = H ><J K and as in Theorem 10 we 
identify H and K as subgroups of G. We shall use Propositions 4. 16 and 4. 17  to determine 
homomorphisms 9 for some specific groups H. In each of the following examples the 
proof that 9 is a homomorphism is easy (since K will often be cyclic) so the details are 
omitted. 
(1) Let H be any abelian group (even of infinite order) and let K = ( x ) � Z2 be the 

group of order 2. Define 9 : K -----+ Aut(H) by mapping x to the automorphism of 
inversion on H so that the associated action is x · h = h - 1 , for all h E H. Then G 
contains the subgroup H of index 2 and 

for all h E H. 

Of particular interest is the case when H is cyclic: if H = Zn , one recognizes G as 
D2n and if H = Z we denote G by D00• 

(2) We can generalize the preceding example in a number of ways. One way is to let H be 
any abelian group and to let K = ( x ) � Z2n be cyclic of order 2n. Define 9 again by 
mapping x to inversion, so that x2 acts as the identity on H. In G, xhx-1 = h-1  and 
x2hx -2 = h for all h E H. Thus x2 E Z(G) . In particular, if H = Z3 and K = Z4, 
G is a non-abelian group of order 1 2  which is not isomorphic to A4 or D12 (since its 
Sylow 2-subgroup, K, is cyclic of order 4). 

(3) Following up on the preceding example let H = ( h ) � Z2• and let K = ( x ) � Z4 
with xhx-1 = h - 1 in G. As noted above, x2 E Z(G) . Since x inverts h (i.e., inverts 

H), x inverts the unique subgroup ( z )  of order 2 in H, where z = h2"-
1
• Thus 

xzx-1 = z-1 
= z, so x centralizes z. It follows that z E Z(G) . Thus x2z E Z(G) 

hence ( x2 z ) :SJ G. Let G = G I ( x2 z ) . Since x2 and z are distinct commuting 
elements of order 2, the order of x2z is 2, so IG I  = � I G I  = 2n+1 . By factoring out the 

product x2z to form G we identify x2 and h2"-
1 

in the quotient. In particular, when 
n = 2, both x and h have order 4, x inverts h and P = x2 . It follows that G � Qs in 
this case. In general, one can check that G has a unique subgroup of order 2 (namely 
( x2 ) ) which equals the center of G. The group G is called the generalized quatemion 
group of order 2n+1 and is denoted by Q2n+l : 

2" 4 - 1 -1 2"- 1 2 Q2•+I = ( h , x l h  = x  = l , x  hx = h  , h  = x  ) .  

(4) Let H = <Q (under addition) and let K = ( x ) � Z. Define 9 by mapping x to the 
map "multiplication by 2" on H, so that x acts on h E H by x · h = 2h . Note that 
multiplication by 2 is an automorphism of H because it has a 2-sided inverse, namely 
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multiplication by ! - In the group G, Z ::: Q and the conjugate xzx-1 of Z is a 
proper subgroup of Z (namely 2Z). Thus x ft Nc (Z) even though xzx- 1 ::: Z (note 
that x -1 Zx is not contained in Z). This shows that in order to prove an element g 
normalizes a subgroup A in an infinite group it is not sufficient in general to show that 
the conjugate of A by g is just contained in A (which is sufficient for finite groups). 

(5) For H any group let K = Aut( H) with cp the identity map from K to Aut( H). The 
sernidirect product H ><l Aut( H) is called the holomorph of H and will be denoted by 
Hol(H). Some holomorphs are described below; verifications of these isomorphisms 
are given as exercises at the end of this chapter. 

(a) Hol(Zz x Zz) � S4. 
(b) If IG I  = n and rr : G � Sn is the left regular representation (Section 4.2), then 

Ns. (rr(G)) � Hol(G) . In particular, since the left regular representation of a 
generator of Zn is an n-cycle in Sn we obtain that for any n-cycle ( 1 2 . . .  n) :  

Ns. ( ( (1 2 . . .  n) )) � Hol(Zn) = Zn ><l Aut(Zn) . 
Note that the latter group has order ncp(n). 

(6) Let p and q be primes with p < q, let H = Zq and let K = Zp . We have already seen 
that if p does not divide q - I then every group of order pq is cyclic (see the example 
following Proposition 4. I6). This is consistent with the fact that if p does not divide 
q - 1 ,  there is no nontrivial homomorphism from Z P into Aut( Zq) (the latter group is 
cyclic of order q - I by Proposition 4. I7). Assume now that p I q - 1 .  By Cauchy's 
Theorem, Aut( Zq ) contains a subgroup of order p (which is unique because Aut( Zq ) 
is cyclic). Thus there is a nontrivial homomorphism, cp, from K into Aut( H). The 
associated group G = H ><l K has order pq and K is not normal in G (Proposition 1 1  ) .  
In particular, G is non-abelian. We shall prove shortly that G is (up to isomorphism) 
the unique non-abelian group of order pq . If p = 2, G must be isomorphic to Dzq . 

(7) Let p be an odd prime. We construct two nonisomorphic non-abelian groups of order 
p3 (we shall later prove that any non-abelian group of order p3 is isomorphic to one 
of these two). 

Let H = Zp x Zp and let K = Zp . By Proposition 4. I7, Aut(H) � GLz(lFp) 
and i GLz (lFp) l  = (p2 - I ) (p2 - p). Since p I IAut(H) I , by Cauchy's  Theorem H 
has an automorphism of order p. Thus there is a nontrivial homomorphism, cp, from 
K into Aut( H) and so the associated group H ><l K is a non-abelian group of order p3 . 
More explicitly, if H = ( a )  x ( b ) , and x is a generator for K then x acts on a and b 
by 

x ·a = ab and x · b  = b 

which defines the action of x on all of H. With respect to the lF p-basis a ,  b of the 
2-dimensional vector space H the action of x (which can be considered in additive 
notation as a nonsingular linear transformation) has matrix c �) E GLz(lFp) .  

The resulting sernidirect product has the presentation 

( x , a, b l xP = aP = bP = I , ab = ba ,  xax-1 = ab, xbx-1 = b ) 

(in fact, this group is generated by {x , a}, and is called the Heisenberg group over 
Z/ pZ, cf. Exercise 25).  

Next let H = Zpz and K = Zp . Again by Proposition 4.17, Aut( H) � Zp(p-l) • 
so H admits an automorphism of order p. Thus there is a nontrivial homomorphism, 
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({!, from K into Aut( H) and so the group H ><1 K is non-abelian and of order p3 . More 
explicitly, if H = ( y }, and x is a generator for K then x acts on y by 

X · Y = yl+P . 
The resulting semidirect product has the presentation 

( x , y I xP = yP2 = 1 ,  xyx-1 = yl+P ) . 

These two groups are not isomorphic (the former contains no element of order 
p2, cf. Exercise 25, and the latter clearly does, namely y). 

(8) Let H = Qg x (Z2 x Z2) = ( i , j ) x ( ( a )  x ( b )) and let K = ( y )  � Z3 . The map 
defined by 

j H k = ij a H b b H  ab 

is easily seen to give an automorphism of H of order 3. Let ({! be the homomorphism 
from K to Aut(H) defined by mapping y to this automorphism, and let G be the 
associated semidirect product, so that y E G acts by 

y · i  = j y · j  = k y ·a = b y ·b  = ab. 

The group G = H ><1 K is a non-abelian group of order 96 with the property that the 
element i2a E G' but i2a cannot be expressed as a single commutator [x , y ], for any 
x, y E G (checking the latter assertion is an elementary calculation). 

As in the case of direct products we now prove a recognition theorem for semidirect 
products. This theorem will enable us to "break down" or "factor" all groups of certain 
orders and, as a result, classify groups of those orders. The strategy is discussed in 
greater detail following this theorem. 

Theorem 12. Suppose G is a group with subgroups H and K such that 
(1) H ::;1 G, and 
(2) H n K = 1 .  

Let cp : K --+ Aut(H) be the homomorphism defined by mapping k E K to the 
automorphism of left conjugation by k on H. Then H K � H ><1 K. In particular, if 
G = H K with H and K satisfying ( 1) and (2), then G is the semidirect product of H 
and K. 

Proof Note that since H ::;1 G, H K is  a subgroup of G. By Proposition 8 every 
element of H K can be written uniquely in the form hk, for some h E H and k E K. 
Thus the map hk t-+ (h , k) is  a set bijection from H K onto H ><1 K. The fact that this 
map is a homomorphism is the computation at the beginning of this section which led 
us to the formulation of the definition of the semidirect product. 

Definition. Let H be a subgroup of the group G. A subgroup K of G is called a 
complement for H in G if G = H K and H n K = 1 .  

With this terminology, the criterion for recognizing a semidirect product i s  simply 
that there must exist a complement for some proper nonnal subgroup of G. Not every 
group is the semidirect product of two of its proper subgroups (for example, if the group 
is simple), but as we have seen, the notion of a semidirect product greatly increases our 
list of known groups. 
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Some Classifications 

We now apply Theorem 12 to classify groups of order n for certain values of n.  The 
basic idea in each of the following arguments is to 
(a) show every group of order n has proper subgroups H and K satisfying the hypoth-

esis of Theorem 12  with G = H K 
(b) find all possible isomorphism types for H and K 
(c) for each pair H, K found in (b) find all possible homomorphisms (/) : K -...+ Aut( H) 
(d) for each triple H, K,  (/) found in (c) form the sernidirect product H ><1 K (so any 

group G of order n is isomorphic to one of these explicitly constructed groups) and 
among all these sernidirect products determine which pairs are isomorphic. This 
results in a list of the distinct isomorphism types of groups of order n. 
In order to start this process we must first find subgroups H and K (of an arbitrary 

group G of order n) satisfying the above conditions. In the case of "small" values 
of n we can often do this by Sylow's Theorem. To show nonnality of H we use the 
conjugacy part of Sylow's Theorem or other normality criteria established in Chapter 4 
(e.g., Corollary 4.5). Some of this work has already been done in the examples in 
Section 4.5. In many of the examples that follow, I H I  and I K I  are relatively prime, so 
H n K = 1 holds by Lagrange's Theorem. 

Since H and K are proper subgroups of G one should think of the determination 
of H and K as being achieved inductively. In the examples we discuss, H and K will 
have sufficiently small order that we shall know all possible isomorphism types from 
previous results. For example, in most instances H and K will be of prime or prime 
squared order. 

There will be relatively few possible homomorphisms (/) : K -...+ Aut(H) in our 
examples, particularly after we take into account certain symmetries (such as replacing 
one generator of K by another when K is cyclic). 

Finally, the sernidirect products which emerge from this process will, in our exam
ples, be small in number and we shall find that, for the most part, they are (pairwise) not 
isomorphic. In general, this can be a more delicate problem, as Exercise 4 indicates. 

We emphasize that this approach to "factoring" every group of some given order 
n as a sernidirect product does not work for arbitrary n. For example, Q8 is not a 
sernidirect product since no proper subgroup has a complement (although we saw that 
it is a quotient of a sernidirect product). Empirically, this process generally works well 
when the group order n is not divisible by a large power of any prime. At the other 
extreme, only a small percentage of the groups of order pa for large a (p a prime) are 
nontrivial sernidirect products. 

Example: (Groups of Order pq, p and q primes with p < q) 
Let G be any group of  order pq, let P E Sylp(G) and let Q E Sylq (G). In Example 1 of the 
applications of Sylow's Theorems we proved that G � Q ><1 P, for some ({! : P --+ Aut( Q). 
Since P and Q are of prime order, they are cyclic. The group Aut( Q) is cyclic of order 
q - 1. If p does not divide q - 1 ,  the only homomorphism from P to Aut(Q) is the trivial 
homomorphism, hence the only semidirect product in this case is the direct product, i.e .. 
G is cyclic. 

Consider now the case when p J q - 1 and let P = ( y } . Since Aut( Q) is cyclic it 
contains a unique subgroup of order p, say ( y } , and any homomorphism ({! : P --+ Aut( Q) 
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must map y to a power ofy .  There are therefore p homomorphisms qJ; : P � Aut(Q) given 
by qJ; (y) = yi , 0 :::; i :::; p - 1 .  Since 9'0 is the trivial homomorphism, Q ><�q>o P � Q x P 
as before. Each qJ; for i =f. 0 gives rise to a non-abelian group, G; , of order pq . It is 
straightforward to check that these groups are all isomorphic because for each qJ; , i > 0, 
there is some generator y; of P such that qJ; (y; ) = y .  Thus, up to a choice for the 
(arbitrary) generator of P, these semidirect products are all the same (see Exercise 6. See 
also Exercise 28 of Section 4.3). 

Example: (Groups of Order 30) 

By the examples following Sylow's Theorem every group G of order 30 contains a subgroup 
H of order 15.  By the preceding example H is cyclic and H is normal in G (index 2). By 
Sylow's Theorem there is a subgroup K of G of order 2. Thus G = H K and H n K = 1 
so G � H ><J K, for some qJ :  K � Aut(H).  By Proposition 4.16, 

Aut(Zts) � (IZ/ 15/Z) x � Z4 x Zz. 

The latter isomorphism can be computed directly, or one can use Exercise 1 1  of the pre
ceding section: writing H as ( a )  x ( b )  � Zs x Z3, we have (since these two subgroups 
are characteristic in H) 

Aut(H) � Aut(Zs) x Aut(Z3).  

In particular, Aut(H) contains precisely three elements of order 2,  whose actions on the 
group H = ( a  ) x ( b ) are the following: { a r+ a } 

b t-+ b-1 
{ a r+ a-1 } 

b t-+ b 
Thus there are three nontrivial homomorphisms from K into Aut( H) given by sending the 
generator of K into one of these three elements of order 2 (as usual, the trivial homomor
phism gives the direct product: H x K � Z3o). 

Let K = ( k ) . If the homomorphism 9'1 : K � Aut(H) is defined by mapping k to 
the first automorphism above (so that k ·a  = a  and k · b  = b-1 gives the action of k on H) 
then G 1 = H ><Jq>1 K is easily seen to be isomorphic to Zs x D6 (note that in this semidirect 
product k centralizes the element a of H of order 5, so the factorization as a direct product 
is ( a ) x ( b, k )) .  

If 9'2 is  defined by mapping k to the second automorphism above, then Gz = H ><1 911 K 

is easily seen to be isomorphic to Z3 x Dw (note that in this semidirect product k centralizes 
the element b of H of order 3, so the factorization as a direct product is ( b )  x ( a, k )  ). 

If 9'3 is defined by mapping k to the third automorphism above then G3 = H ><Jq>3 K is 
easily seen to be isomorphic to D3o .  

Note that these groups are all nonisomorphic since their centers have orders 30 (in the 
abelian case), 5 (for Gt  ), 3 (for Gz), and 1 (for G3). 

We emphasize that although (in hindsight) this procedure does not give rise to any 
groups we could not already have constructed using only direct products, the argument 
proves that this is the complete list of isomorphism types of groups of order 30. 

Example: (Groups of Order 12) 

Let G be a group of order 12, let V E Sy[z(G) and let T E Syl3 (G). By the discussion of 
groups of order 12 in Section 4.5 we know that either V or T is normal in G (for purposes 
of illustration we shall not invoke the full force of our results from Chapter 4, namely that 
either T � G or G � A4). By Lagrange's Theorem V n T = 1 .  Thus G is a semidirect 
product. Note that v � z4 or Zz X Zz and T � ZJ. 
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Case 1: V � G 
We must determine all possible homomorphisms from T into Aut( V). If V � Z4, 

then Aut(V) � Zz and there are no nontrivial homomorphisms from T into Aut(V). Thus 
the only group of order 12 with a normal cyclic Sylow 2-subgroup is Z12. 

Assume therefore that V � Z2 x Zz. In this case Aut(V) � S3 and there is a unique 
subgroup of Aut( V) of order 3, say ( y ) . Thus if T = ( y ) , there are three possible 
homomorphisms from T into Aut(V) : 

q;; : T � Aut(V) defined by rp; (y) = yi . i = 0, I , 2. 
As usual, rpo is the trivial homomorphism, which gives rise to the direct product 

Zz x Zz x Z3 . Homomorphisms 91 and 92 give rise to isomorphic semidirect products 
because they differ only in the choice of a generator for T (i.e., 91 (y) = y and rpz (y') = y, 
where y' = y2 and y' is another choice of generator for T - see also Exercise 6). The 
unique non-abelian group in this case is A4. 

Case 2: T � G 
We must determine all possible homomorphisms from V into Aut(T).  Note that 

Aut(T) = ( A )  � Zz, where A inverts T. If v = ( X  ) � z4. there are precisely two 
homomorphisms from V into Aut(T):  the trivial homomorphism and the homomorphism 
which sends x to A. As usual, the trivial homomorphism gives rise to the direct product: 
Z3 x Z4 � Z12 - The nontrivial homomorphism gives the semidirect product which was 
discussed in Example 2 following Proposition I I  of this section. 

Finally, assume V = ( a )  x ( b )  � Zz x Zz. There are precisely three nontrivial 
homomorphisms from V into Aut(T) determined by specifying their kernels as one of the 
three subgroups of order 2 in V. For example, 91 (a) = A and 91 (b) = A has kernel ( ab ) ,  
that is, in  this semi direct product both a and b act by inverting T and ab centralizes T. If 
rpz and 93 have kernels ( a )  and ( b ) , respectively, then one easily checks that the resulting 
three semidirect products are all isomorphic to s3 X Zz, where the Zz direct factor is the 
kernel of q;; . For example, 

T YJrp1 V = ( a,  T )  x ( ab ) . 

In summary, there are precisely 5 groups of order I 2, three of which are non-abelian. 

Example: (Groups of Order p3, p an odd prime) 

Let G be a group of order p3, p an odd prime, and assume G is not cyclic. By Exercise 9 
of the previous section the map x t-+ xP is a homomorphism from G into Z(G) and the 
kernel of this homomorphism has order p2 or p3 . In the former case G must contain an 
element of order p2 and in the latter case every nonidentity element of G has order p. 

Case 1 :  G has an element of order p2 

Let x be an element of order p2 and let H = ( x ) . Note that since H has index 
p, H is normal in G by Corollary 4.5. If E is the kernel of the p1h power map, then in 
this case E � Zp x Zp and E n  H = ( xP ). Let y be any element of E - H and let 
K = ( y ) . By construction, H n K = I and so G is isomorphic to ZP2 YJ Zp , for some 
rp : K � Aut(H). If rp is the trivial homomorphism, G � ZP2 x Zp , so we need only 
consider the nontrivial homomorphisms. By Proposition 4. I 7  Aut( H) � Zp(p-1) is cyclic 
and so contains a unique subgroup of order p, explicitly given by ( y ) where 

y (x) = xl+P _ 
As usual, up to choice of a generator for the cyclic group K, there is only one nontrivial 
homomorphism, rp, from K into Aut(H), given by rp(y) = y ;  hence up to isomorphism 
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there is a unique non-abelian group H � K in this case. This group is described in Example 7 
above. 

Case 2: every nonidentity element of G has order p 
In this case let H be any subgroup of G of order p2 (see Exercise 29, Section 4.3). 

Necessarily H � Zp x Zp . Let K = { y )  for any element y of G - H. Since H has index 
p, H :::1 G and since K has order p but is not contained in H, H n K = 1 .  Then G is 
isomorphic to (Zp x Zp) � Zp. for some q� : K -+  Aut(H}. Ifq� is trivial, G � Zp x Zp x Zp 
(the elementary abelian group), so we may assume q� is nontrivial. By Proposition 4. 17, 

Aut(H} � GL2(lFp) 

so IAut(H} I = (p2 - 1}(p2 - p) . Note that a Sylow p-subgroup of Aut(H) has order 
p so all subgroups of order p in Aut( H) are conjugate in Aut(H) by Sylow's Theorem. 
Explicitly, (as discussed in Example 7 above) every subgroup of order p in Aut(H} is 
conjugate to { y } ,  where if H = { a }  x { b } ,  the automorphism y is defined by 

y (a) = ab and y (b) = b. 

With respect to the lF p-basis a, b of the 2-dimensional vector space H the automorphism 
has matrix 

( � �) e GL2(lFp) .  

Thus (again quoting Exercise 6) there is  a unique isomorphism type of semidirect product 
in this case. 

Finally, since the two non-abelian groups have different orders for the kernels of the 
pth power maps, they are not isomorphic. A presentation for this group is also given in 
Example 7 above. 

E X E R C I S E S 

Let H and K be groups, let q� be a homomorphism from K into Aut( H) and, as usual, identify 
H and K as subgroups of G = H �� K. 

1.  Prove that CK (H) = ker q� (recall that CK (H) = CG (H) n K). 

2. Prove that Cn (K) = Nn (K). 

3. In Example 1 following the proof of Proposition 1 1  prove that every element of G - H 
has order 2. Prove that G is abelian if and only if h2 = 1 for all h e H. 

4. Let p = 2 and check that the construction of the two non-abelian groups of order p3 is  
valid in this case. Prove that both resulting groups are isomorphic to Dg. 

S. Let G = Hol(Z2 x Z2) .  
(a) Prove that G = H � K where H = z2 X z2 and K � s3 . Deduce that I G I  = 24. 
(b) Prove that G is isomorphic to S4. [Obtain a homomorphism from G into &t by letting 

G act on the left cosets of K .  Use Exercise 1 to show this representation is faithful.] 

6. Assume that K is a cyclic group, H is an arbitrary group and 9'11 and 9'12 are homomorphisms 
from K into Aut( H) such that 9'11 (K) and 9'12 ( K) are conjugate subgroups of Aut( H). If K is 
infinite assume 9'11 and 9'12 are injective. Prove by constructing an explicit isomorphism that 
H ��� K � H ��2 K (in particular, if the subgroups q11 (K} and q�2 (K) are equal in Aut(H}, 
then the resulting semidirect products are isomorphic). [Suppose u q�1 (K)u -1 = 9'2 (K) 
so that for some a e Z we have u 9'11 (k)u -1 = q12 (k)a for all k e K. Show that the map 
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1/1 : H XJ"'' K --+ H XJ"'2 K defined by 1/f((h ,  k)) = (a (h) ,  ka ) is a homomorphism. Show 
1/1 is bijective by constructing a 2-sided inverse.] 

7. This exercise describes thirteen isomorphism types of groups of order 56. (It is not too 
difficult to show that every group of order 56 is isomorphic to one of these.) 
(a) Prove that there are three abelian groups of order 56. 
(b) Prove that every group of order 56 has either a normal Sylow 2-subgroup or a normal 

Sylow 7-subgroup. 
(c) Construct the following non-abelian groups of order 56 which have a normal Sylow 

7-subgroup and whose Sylow 2-subgroup S is as specified: 
one group When S ::;:: Z2 X Z2 X Z2 
twO nonisomorphic groups When S ::;:: Z4 X Z2 
one group when S ::;:: Zs 
two nonisomorphic groups when S ::;:: Qs 
three nonisomorphic groups when S ::;:: Ds. 

[For a particular S, two groups are not isomorphic if the kernels of the maps from S 
into Aut(Z7) are not isomorphic.] 

(d) Let G be a group of order 56 with a nonnormal Sylow 7-subgroup. Prove that if S is 
the Sylow 2-subgroup of G then S ::;:: Z2 x Z2 x Z2 . [Let an element of order 7 act 
by conjugation on the seven nonidentity elements of S and deduce that they all have 
the same order.] 

(e) Prove that there is a unique group of order 56 with a nonnormal Sylow 7-subgroup. 
[For existence use the fact that IGL3(lF2) I = 1 68;  for uniqueness use Exercise 6.] 

8. Construct a non-abelian group of order 75. Classify all groups of order 75 (there are three 
of them). [Use Exercise 6 to show that the non-abelian group is unique.] (The classification 
of groups of order pq2, where p and q are primes with p < q and p not dividing q - 1 ,  
i s  quite similar.) 

9. Show that the matrix ( � -!) is an element of order 5 in G L2 (1Ft9) .  Use this matrix 

to construct a non-abelian group of order 1 805 and give a presentation of this group. 
Classify groups of order 1 805 (there are three isomorphism types). [Use Exercise 6 to 
prove uniqueness of the non-abelian group.] (A general method for finding elements 
of prime order in G Ln (lF p) is described in the exercises in Section 12.2; this particular 
matrix of order 5 in GL2ClFt9) appears in Exercise 16 of that section as an illustration of 
the method.) 

10. This exercise classifies the groups of order 147 (there are six isomorphism types). 
(a) Prove that there are two abelian groups of order 147. 
(b) Prove that every group of order 147 has a normal Sylow 7-subgroup. 
(c) Prove that there is a unique non-abelian group whose Sylow 7-subgroup is cyclic. 

(d) Let t1 = ( � �) and t2 = ( � �) be elements of GL2 (lF7) . Prove P = ( t1 . t2 ) is 

a Sylow 3-subgroup of G L2 (lF7) and that P ::;:: Z3 x Z3 . Deduce that every subgroup 
of GL2 (1F7) of order 3 is conjugate in GL2 (lF7) to a subgroup of P. 

(e) By Example 3 in Section 1 the group P has four subgroups of order 3 and these 
are: Pt = ( tt ) , P2 = { t2 ) , P3 = { t1 t2 ) , and P4 = ( t1 t� ) . For i = 1 , 2, 3, 4 let 
G; = (Z7 x Z7) XJ"'' Z3, where q;; is an isomorphism of Z3 with the subgroup P; of 
Aut(Z7 x Z7) . For each i describe G; in terms of generators and relations. Deduce 
that Gt ::;:: G2 . 

(f) Prove that Gt is not isomorphic to either G3 or G4. [Show that the center of Gt  has 
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order 7 whereas the centers of G3 and G4 are trivial.] 
(g) Prove that G3 is not isomorphic to G4. [Show that every subgroup of order 7 in G3 

is normal in G3 but that G4 has subgroups of order 7 that are not normal.] 
(h) Classify the groups of order 147 by showing that the six nonisomorphic groups de

scribed above (two from part (a), one from part (c) and GI ,  G3, and G4) are all the 
groups of order 147. [Use Exercise 6 and part (d).] (The classification of groups of 
order pq

2
, where p and q are primes with p < q and p I q - 1, is quite similar.) 

11. Oassify groups of order 28 (there are four isomorphism types). 

12. Classify the groups of order 20 (there are five isomorphism types). 

13. Classify groups of order 4 p, where p is a prime greater than 3. [There are four isomorphism 
types when p = 3(mod 4) and five isomorphism types when p = 1 (mod 4) .] 

14. This exercise classifies the groups of order 60 (there are thirteen isomorphism types). 
Let G be a group of order 60, let P be a Sylow 5-subgroup of G and let Q be a Sylow 
3-subgroup of G. 
(a) Prove that if P is not normal in G then G � A5 . [See Section 4.5.] 
(b) Prove that if P :'Sl G but Q is not normal in G then G � A4 x Z5. [Show in this case 

that P � Z(G), Gf P � A4, a Sylow 2-subgroup T of G is normal and T Q � A4 .] 
(c) Prove that if both P and Q are normal in G then G � ZI5 >1 T where T � Z4 or 

z2 X z2 . Show in this case that there are six isomorphism types when T is cyclic 
(one abelian) and there are five isomorphism types when T is the Klein 4-group (one 
abelian). [Use the same ideas as in the classifications of groups of orders 30 and 20.] 

15. Let p be an odd prime. Prove that every element of order 2 in G L2 (lF P) is conjugate to a 
diagonal matrix with ± 1  's on the diagonal. Classify the groups of order 2p2 . [If A is a 
2 x 2 matrix with A2 = I and VI , v2 is a basis for the underlying vector space, look at A 
acting on the vectors WI = VI + v2 and w2 = VI - v2 .] 

16. Show that there are exactly 4 distinct homomorphisms from Z2 into Aut(Zg) .  Prove that 
the resulting sernidirect products are the groups: Zg x Z2, DI6 . the quasi dihedral group 
QDI6 and the modular group M (cf. the exercises in Section 2.5). 

17. Show that for any n � 3 there are exactly 4 distinct homomorphisms from Z2 into Aut( Z2" ) .  
Prove that the resulting sernidirect products give 4 nonisomorphic groups of  order 2n+I . 
[Recall Exercises 21 to 23 in Section 2.3.] (These four groups together with the cyclic 
group and the generalized quaternion group, Q2n+J , are all the groups of order 2n+ I which 
possess a cyclic subgroup of index 2.) 

18. Show that if H is any group then there is a group G that contains H as a normal sub
group with the property that for every automorphism a of H there is an element g E G 
such that conjugation by g when restricted to H is the given automorphism a ,  i.e., every 
automorphism of H is obtained as an inner automorphism of G restricted to H. 

19. Let H be a group of order n, let K = Aut( H) and form G = Hol(H) = H >1 K (where cp 
is the identity homomorphism). Let G act by left multiplication on the left cosets of K in 
G and let rr be the associated permutation representation rr : G � Sn . 
(a) Prove the elements of H are cosetrepresentatives fortheleft cosets of K in G  and with 

this choice of coset representatives rr restricted to H is the regular representation of H.  
(b) Prove rr(G) is the normalizer in  Sn of rr (H).  Deduce that under the regular repre

sentation of any finite group H of order n, the normalizer in Sn of the image of H is 
isomorphic to Hol(H). [Show I G I  = I Ns., (rr(H)) I using Exercises 1 and 2 above.] 

(c) Deduce that the normalizer of the group generated by an n-cycle in Sn is isomorphic 
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20. Let p be an odd prime. Prove that if P is a non-cyclic p-group then P contains a normal 
subgroup U with U � Zp x Zp. Deduce that for odd primes p a p-group that contains 
a unique subgroup of order p is cyclic. (For p = 2 it is a theorem that the generalized 
quaternion groups Qz .. are the only non-cyclic 2-groups which contain a unique subgroup 
of order 2) . [Proceed by induction on I P l . Let Z be a subgroup of order p in Z(P) and 
let P = PfZ. If p is cyclic then P is abelian by Exercise 36 in Section 3 . 1 - show the 
result is true for abelian groups. When P is not cyclic use induction to produce a normal 
subgroup H of P with H � Zp x Zp. Let H be the complete preimage of H in P, so 
I H I  = p3 . Let Ho = {x E H I xP = 1 }  so that Ho is a characteristic subgroup of H of 
order p2 or p3 by Exercise 9 in Section 4. Show that a suitable subgroup of Ho gives the 
desired normal subgroup U.] 

21. Let p be an odd prime and let P be a p-group. Prove that if every subgroup of P is normal 
then P is abelian. (Note that Qs is a non-abelian 2-group with this property, so the result 
is false for p = 2.) [Use the preceding exercises and Exercise 15 of Section 4.] 

22. Let F be a field let n be a positive integer and let G be the group of upper triangular 
matrices in GLn (F) (cf. Exercise 16, Section 2. 1 )  
(a) Prove that G i s  the sernidirect product U ><l D where U i s  the set of upper triangular 

matrices with 1 's down the diagonal ( cf. Exercise 1 7, Section 2. 1 )  and D is the set of 
diagonal matrices in GLn (F). 

(b) Let n=2. Recall that U � F and D � F x  x F x  (cf. Exercise 1 1  in Section 3 . 1 ) .  
Describe the homomorphism from D into Aut(U) explicitly in terms of these isomor
phisms (i.e., show how each element of Fx x F x  acts as an automorphism on F). 

23. Let K and L be groups, let n be a positive integer, let p : K -+ Sn be a homomorphism 
and let H be the direct product of n copies of L. In Exercise 8 of Section 1 an injective 
homomorphism 1/r from Sn into Aut(H) was constructed by letting the elements of Sn 
permute the n factors of H. The composition 1/r o p is a homomorphism from G into 
Aut( H).  The wreath product of L by K is the semidirect product H ><l K with respect to 
this homomorphism and is denoted by L 1 K (this wreath product depends on the choice 
of permutation representation p of K - if none is given explicitly, p is assumed to be the 
left regular representation of K). 
(a) Assume K and L are finite groups and p is the left regular representation of K. Find 

I L 1 K l  in terms of I K I and I L l .  
(b) Let p be a prime, let K = L = Zp and let p be the left regular representation of K. 

Prove that Zp 1 Zp is  a non-abelian group of order pP+l and is isomorphic to a Sylow 
p-subgroup of SP2 .  [The p copies of Zp whose direct product makes up H may be 
represented by p disjoint p-cycles; these are cyclically permuted by K .] 

24. Let n be an integer > 1 .  Prove the following classification: every group of order n is 
abelian if and only if n = pf ' p�2 • • •  p�' , where PI , . . .  , Pr are distinct primes, a; = 1 or 
2 for all i E { 1 ,  . . . , r }  and p; does not divide p ;1 - 1 for all i and j .  [See Exercise 56 in 
Section 4.5.] 

25. Let H (IF P) be the Heisenberg group over the finite field IF P = 7!./ p7!. (cf. Exercise 20 in 
Section 4). Prove that H(IFz) � Ds, and that H(IFp) has exponent p and is isomorphic to 
the first non-abelian group in Example 7. 
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CHAPTER 6 

Fu rt h e r  To p ics in G ro u p Theory 

6.1 p-GROUPS. N ILPOTENT GROUPS. AND SOLVABLE GROUPS 

Let p be a prime and let G be a finite group of order pan, where p does not divide 
n.  Recall that a (finite) p-group is any group whose order is a power of p. Sylow's 
Theorem shows that p-groups abound as subgroups of G and in order to exploit this 
phenomenon to unravel the structure of finite groups it will be necessary to establish 
some basic properties of p-groups. In the next section we shall apply these results in 
many specific instances. 

Before giving the results on p-groups we first recall a definition that has appeared 
in some earlier exercises. 

Definition. A maximal subgroup of a group G is a proper subgroup M of G such that 
there are no subgroups H of G with M < H < G. 

By order considerations every proper subgroup of a finite group is  contained in 
some maximal subgroup. In contrast, infinite groups may or may not have maximal 
subgroups. For example, p'll is a maximal subgroup of 7l whereas Q (under +) has no 
maximal subgroups (cf. Exercise 16 at the end of this section). 

We now collect all the properties of p-groups we shall need into an omnibus theo
rem: 

Theorem 1. Let p be a prime and let P be a group of order pa, a � 1 .  Then 
(1) The center of P is nontrivial: Z(P) =f. 1 .  
(2) If H is a nontrivial normal subgroup of P then H intersects the center non

trivially: H n Z(P) =f. 1 .  In particular, every normal subgroup of order p is 
contained in the center. 

(3) If H is a normal subgroup of P then H contains a subgroup of order ph that is 
normal in P for each divisor ph of I H 1. In particular, P has a normal subgroup 
of order ph for every b E  {0, 1 ,  . . .  , a} .  

(4) If H < P then H < Np (H) (i.e., every proper subgroup of P is a proper 
subgroup of its normalizer in P). 

(5) Every maximal subgroup of P is of index p and is normal in P. 

Proof: These results rely ultimately on the class equation and it  may be useful for 
the reader to review Section 4.3. 
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Part 1 is Theorem 8 of Chapter 4 and is also the special case of part 2 when H = P.  
We therefore begin by proving (2); we shall not quote Theorem 8 of Chapter 4 although 
the argument that follows is only a slight generalization of the one in Chapter 4. Let 
H be a nontrivial normal subgroup of P .  Recall that for each conjugacy class C of P, 
either C � H or C n H = l2l because H is normal (this easy fact was shown in a remark 
preceding Theorem 4. 12). Pick representatives of the conjugacy classes of P :  

with a1 , . . . , ak E H and ak+l • . . .  , ar fj. H. Let C; be the conjugacy class of a; i n  P,  
for all  i .  Thus 

C; � H, 1 :::::: i :::::: k and C; n H = 12!, k + 1 :::::: i :::::: r. 

By renumbering a1 , . . . , ak if necessary we may assume a1 , . . .  , as represent classes of 
size 1 (i.e. ,  are in the center of P) and as+ I . . . .  , ak represent classes of size > 1 .  Since 
H is the disjoint union of these we have 

k 
I P I 

I H I  = I H n Z(P) I + L 
i=s+l I Cp (a; ) l  

Now p divides I H I  and p divides each term i n  the sum L�=s+l I P  : Cp (a; ) l  so p 
divides their difference: I H n Z(P) I . This proves H n Z(P) f 1 .  If I H I  = p, since 
H n Z(P) f 1 we must have H :::::: Z(P).  This completes the proof of (2). 

Next we prove (3) by induction on a.  If a :::::: 1 or H = 1, theresult is trivial. Assume 
therefore that a > 1 and H f 1 .  By part 2, H n Z(P) f 1 so by Cauchy's Theorem 
H n Z(P) contains a (normal) subgroup Z of order p. Use bar notation to denote 
passage to the quotient group PI Z. This quotient has order pa- l and H � P.  By 
induction, for every nonnegative integer b such that pb divides I H I  there is a subgroup 
K of H of order pb that is normal in P .  If K is the complete preirnage of K in P then 
I K I  = pb+l . The set of all subgroups of H obtained by this process together with the 
identity subgroup provides a subgroup of H that is normal in P for each divisor of I H 1 -
The second assertion of part 3 i s  the special case H = P.  This establishes p art  3. 

We prove (4) also by induction on I P l .  If P is abelian then all subgroups of P 
are normal in P and the result is trivial. We may therefore assume I P 1 > p (in fact, 
I P I > p2 by Corollary 4.9). Let H be a proper subgroup of P.  Since all elements 
of Z(P) commute with all elements of P, Z(P) normalizes every subgroup of P.  By 
part 1 we have that Z(P) f 1. If Z(P) is not contained in H, then H is properly 
contained in { H, Z(P) ) and the latter subgroup is contained in N p (H) so (4) holds. 
We may therefore assume Z(P) :::::: H. Use bar notation to denote passage to the 
quotient PI Z ( P) .  Since P has smaller order than P by ( 1 ), by induction H is properly 
contained in Np-(H). It follows directly from the Lattice Isomorphism Theorem that 

N p (H) is the complete preirnage in P of Np-(H), hence we obtain proper containment 
of H in its normalizer in this case as well. This completes the induction. 

To prove (5) let M be a maximal subgroup of P .  By definition, M < P so by part 
4, M < Np (M). By definition of maximality we must therefore have Np (M) = P, 
i.e., M � P .  The Lattice Isomorphism Theorem shows that PI M is a p-group with 
no proper nontrivial subgroups because M is a maximal subgroup. By part 3, however, 
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P/M has subgroups ofevery order dividing I P/MI .  The only possibility is I P/MI = p .  
This proves (5) and completes the proof of the theorem. 

Definition. 
(1) For any (finite or infinite) group G define the following subgroups inductively: 

Zo(G) = 1 , 

and Zi+t (G) is the subgroup of G containing Z; (G) such that 

Zi+t (G)/Z; (G) = Z(G/Z; (G)) 

(i.e., Z;+1 (G) is the complete preimage in G of the center of G/Z; (G) under 
the natural projection). The chain of subgroups 

is called the upper central series of G. (The use of the term "upper" indicates 
that Z; (G) � Zi+t (G) .) 

(2) A group G is called nilpotent if Zc (G) = G for some c E Z. The smallest such 
c is called the nilpotence class of G. 

One of the exercises at the end of  this section shows that Z; (G) is a characteristic 
(hence normal) subgroup of G for all i .  We use this fact freely from now on. 

Remarks: 
(1) If G is abelian then G is nilpotent (of class 1 , provided I G I > 1 ), since in this 

case G = Z(G) = Z1 (G). One should think of nilpotent groups as lying between 
abelian and solvable groups in the hierarchy of structure (recall that solvable groups 
were introduced in Section 3.4; we shall discuss solvable groups further at the end 
of this section): 

cyclic groups C abelian groups C nilpotent groups C solvable groups C all groups 
(all of the above containments are proper, as we shall verify shortly). 

(2) For any finite group there must, by order considerations, be an integer n such that 

Zn (G) = Zn+t (G) = Zn+2 (G) = · · · .  
For example, Zn (S3) = 1 for all n E z+. Once two terms in the upper central 
series are the same, the chain stabilizes at that point (i.e., all terms thereafter are 
equal to these two). For example, if G = z2 X SJ , 

Z(G) = Z1 (G) = Z2 (G) = Zn (G) has order 2 for all n .  

By definition, Zn (G) i s  a proper subgroup of  G for all n for non-nilpotent groups. 
(3) For infinite groups G it may happen that all Z; (G) are proper subgroups of G (so 

G is not nilpotent) but 
00 

G = U Z; (G) . 
i=O 
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Groups for which this hold are called hypernilpotent - they enjoy some (but 
not all) of the properties of nilpotent groups. While we shall be dealing mainly 
with finite nilpotent groups, results that do not involve the notion of order, Sylow 
subgroups etc. also hold for infinite groups. Even for infinite groups one of the 
main techniques for dealing with nilpotent groups is induction on the nilpotence 
class. 

Proposition 2. Let p be a prime and let P be a group of order pa
. Then P is nilpotent 

of nilpotence class at most a - 1 .  

Proof For each i ;:: 0, P I  Zi ( P )  is a p-group, so 

if I P  IZ; ( P) I > 1 then Z(P IZ; (P)) "f:. 1  

by Theorem 1 ( 1 ). Thus if Z; (P) "I G then I Zi+t (P) I :::: p i Zi (P) I and so I Zi+t (P) I ;:: 

p
i+ 1 • In particular, I Za ( P) I ;:: p

a
, so P = Za ( P) .  Thus P is nilpotent of class � a .  

The only way P could be of nil potence class exactly equal to a would be if I Zi ( P)  1 = pi 

for all i .  In this case, however, Za-z (P) would have index p2 in P, so PIZa_2(P) 
would be abelian (by Corollary 4.9). But then P IZa-z (P) would equal its center and 
so Za- l  (P) would equal P, a contradiction. This proves that the class of P is � a - 1 .  

Example 

Both Ds and Qs are nilpotent of class 2. More generally, Dzn is nilpotent of class n - 1 .  
This can b e  proved inductively by showing that I Z ( Dz" ) I = 2 and Dzn f Z ( Dzn ) � Dzn-I 
for n :::: 3 (the details are left as an exercise). If n is not a power of 2, Dzn is not nilpotent 
(cf. Exercise 10).  

We now give some equivalent (and often more workable) characterizations of nil po
tence for finite groups: 

Theorem 3. Let G be a finite group, let Pt , pz , . . .  , Ps be the distinct primes dividing 
its order and let P; E Sylp, (G) , 1 � i � s .  Then the following are equivalent: 

(1) G is nilpotent 
(2) if H < G then H < Nc (H), i.e., every proper subgroup of G is a proper 

subgroup of its normalizer in G 
(3) Pi � G for 1 � i � s, i.e., every Sylow subgroup is normal in G 
(4) G � Pt X Pz X · · · X Ps . 

Proof The proof that ( 1 ) implies (2) is the same argument as for p-groups - the 
only fact we needed was if G is nilpotent then so is G I Z (G) - so the details are omitted 
(cf. the exercises). 

To show that (2) implies (3) let P = P; for some i and let N = Nc (P) .  Since 
P � N, Corollary 4.20 gives that P is characteristic in N. Since P char N � Nc (N) 
we get that P � Nc (N). This means Nc (N) � N and hence Nc (N) = N. By (2) we 
must therefore have N = G, which gives (3) . 

Next we prove (3) implies (4). For any t, 1 � t � s we show inductively that 

Pt Pz · · · Pt � Pt x Pz x · · · x Pt .  
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Note first that each P; is normal in G so PI · · · P, is a subgroup of G. Let H be the 
product PI · · ·  P,_I and let K = P1 , so by induction H � PI x · · ·  x P1- I . In particular, 
I H I = ! PI I · I P2 l ·  · · I Pt-I l · Since I K I = I P, l ,  the orders of H and K are relatively 
prime. Lagrange's Theorem implies H n K = 1 .  By definition, PI · · · P, = H K, 
hence Theorem 5.9 gives 

H K � H X K = (PI X . . .  X P,_I ) X P, � PI X . . • X P, 
which completes the induction. Now take t = s to obtain (4). 

Finally, to prove (4) implies ( 1 )  use Exercise 1 of Section 5. 1 to obtain 

Z(P1 X • • • X Ps) � Z(P1 ) X • · • X Z(P8) .  

By Exercise 14  in Section 5. 1 ,  

G/Z(G) = (P1 /Z(P1 )) X · · · X (P5 /Z(P5)) .  
Thus the hypotheses of (4) also hold for G/Z(G). By Theorem 1 ,  if  P; =j:. 1 then 
Z(P; ) =j:. 1 , so if G =j:. 1 , !G/Z(G) I < ! G ! .  By induction, GjZ(G) is nilpotent, so by 
Exercise 6, G is nilpotent. This completes the proof. 

Note that the first part of the Fundamental Theorem of Finite Abelian Groups 
(Theorem 5 in Section 5.2) follows immediately from the above theorem (we shall give 
another proof later as a consequence of the Chinese Remainder Theorem): 

Corollary 4. A finite abelian group is the direct product of its Sylow subgroups. 

Next we prove a proposition which will be used later to show that the multiplicative 
group of a finite field is cyclic (without using the Fundamental Theorem ofFiniteAbelian 
Groups). 

Proposition 5. If G is a finite group such that for all positive integers n dividing its 
order, G contains at most n elements x satisfying xn = 1 ,  then G is cyclic. 

Proof Let I G I = p�1 • • • p�· and let P; be a Sylow p; -subgroup of G for 

i = 1 ,  2, . . . , s .  Since p�; I ! G I  and the p�; elements of P; are solutions of xP�; = 1 ,  
by hypothesis P; must contain all solutions to this equation in G. It follows that P; is 
the unique (hence normal) Sylow p; -subgroup of G. By Theorem 3, G is the direct 
product of its Sylow subgroups. By Theorem 1 ,  each P; possesses a normal subgroup 

M; of index p; . Since I M; I = p�; - 1 and G has at most p�; - 1 solutions to xP�; - 1 
= 1,  

by Lagrange's Theorem (Corollary 9, Section 3.2) M contains all elements x of G 
a · - 1  a ·  

satisfying xP;
' = 1. Thus any element of P; not contained in M; satisfies xP'

' = 1 
but xP�, - 1 

=j:. l, i.e., x is an element of order p�; .  This proves P; is cyclic for all i ,  so G 
is the direct product of cyclic groups of relatively prime order, hence is cyclic. 

The next proposition is called Frattini's Argument. We shall apply it to give another 
characterization of finite nilpotent groups. It will also be a valuable tool in the next 
section. 
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Proposition 6. ( Frattini 's Argument) Let G be a finite group, let H be a normal subgroup 
of G and let P be a Sylow p-subgroup of H.  Then G = HNc (P) and I G  : H I  divides 
I Nc (P) I . 

Proof" By Corollary 3 . 15 ,  H Nc (P) is a subgroup of G and H Nc (P) = Nc (P)H 
since H is a normal subgroup of G. Let g E G. Since pg :::S Hg = H, both P and pg 

are Sylow p-subgroups of H. By Sylow's Theorem applied in H, there exists x E H 
such that Pg = px _ Thus gx-1 E Nc (P) and so g  E Nc (P)x. Since g was an arbitrary 
element of G, this proves G = Nc (P)H. 

Apply the Second Isomorphism Theorem to G =  Nc (P)H to conclude that 

I G  : H I = I Nc (P) : Nc (P) n H I  

so I G  : H I  divides I Nc (P) I ,  completing the proof. 

Proposition 7. A finite group is nilpotent if and only if every maximal subgroup is 
normal. 

Proof" Let G be a finite nilpotent group and let M be a maximal subgroup of G. 
As in the proof of Theorem 1 ,  since M < Nc (M) (by Theorem 3(2)) maximality of M 
forces Nc (M) = G, i.e., M :'::J G.  

Conversely, assume every maximal subgroup of the finite group G is  normal. Let 
P be a Sylow p-subgroup of G. We prove P :'::J G and conclude that G is nilpotent by 
Theorem 3(3). If P is not normal in G let M be a maximal subgroup of G containing 
Nc (P).  By hypothesis, M :'::J G hence by Frattini's Argument G = MNc (P).  Since 
Nc (P) :::S M we have MNc (P) = M, a contradiction. This establishes the converse. 

Commutators and the Lower Central Series 

For the sake of completeness we include the definition of the lower central series of a 
group and state its relation to the upper central series. Since we shall not be using these 
results in the future, the proofs are left as (straightforward) exercises. 

Recall that the commutator of two elements x, y in a group G is defined as 

[x , y] = x-1y-1xy, 
and the commutator of two subgroups H and K of G is 

[H, K] = ( [h , k] I h E H, k E K ) .  
Basic properties of commutators and the commutator subgroup were established in 
Section 5.4. 

Definition. For any (finite or infinite) group G define the following subgroups induc
tively: 

The chain of groups 

G1 = [G, G] and Gi+1 = [G, Gt 
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is called the lower central series of G. (The term "lower" indicates that Gi :::: Gi+1 .) 

As with the upper central series we include in the exercises at the end of this section 
the verification that G; is a characteristic subgroup of G for all i .  The next theorem 
shows the relation between the upper and lower central series of a group. 

Theorem 8. A group G is nilpotent if and only if G" = I for some n :::: 0. More 
precisely, G is nilpotent of class c if and only if c is the smallest nonnegative integer 
such that Gc = 1 .  If G is nilpotent of class c then 

Z; (G) _::: Gc-i-t _::: Z;+t (G) for all i E {0, 1 ,  . . . , c - 1 } .  

Proof" This is proved by a straightforward induction on the length of either the 
upper or lower central series. 

The terms of the upper and lower central series do not necessarily coincide in 
general although in some groups this does occur. 

Remarks: 
(1) If G is abelian, we have already seen that G' = G 1 = 1 so the lower central series 

terminates in the identity after one term. 
(2) As with the upper central series, for any finite group there must, by order consid

erations, be an integer n such that 

G" = G"+t = on+2 = . . . .  
For non-nilpotent groups, G" is a nontrivial subgroup of G. For example, in 
Section 5 .4 we showed that S� = S� = A3 •  Since S3 is not nilpotent, we must have 
Sr = A3 . In fact 

( 123) = [( 12) , ( 1 32)) E [S3 , Sl J = Si . 

Once two terms in the lower central series are the same, the chain stabilizes at that 
point i.e., all terms thereafter are equal to these two. Thus S� = A3 for all i :::: 2. 
Note that S3 is an example where the lower central series has two distinct terms 
whereas all terms in the upper central series are equal to the identity (in particular, 
for non-nilpotent groups these series need not have the same length). 

Solvable Groups and the Derived Series 

Recall that in Section 3.4 a solvable group was defined as one possessing a series: 

such that each factor H;+t f H; is abelian. We now give another characterization of 
solvability in terms of a descending series of characteristic subgroups. 
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Definition. For any group G define the following sequence of subgroups inductively: 

G<0> = G, G(l) = [G, G] and G<i+1> = [G<n .  G<n] for all i ::: 1 .  
This series of subgroups is called the derived or commutator series of G. 

The terms ofthis series are also often written as: G<1> = G', G<2> = G", etc. Again 
it is left as an exercise to show that each G(i) is characteristic in G for all i .  

It i s  important to note that although G<0> = G 0  and G<1>  = G1 , it i s  not in general 
true that G(i) = G; . The difference is that the definition of the i+1 st term in the lower 
central series is the commutator of the ;th term with the whole group G whereas the 
i +1st term in the derived series is the commutator of the ;th term with itself. Hence 

G<n ::; G; for all i 

and the containment can be proper. For example, in G = S3 we have already seen that 
G1 = G' = A3 and G2 = [8:3 , A3] = A3, whereas G<2> = [A3 , A3] = 1 (A3 being 
abelian). 

Theorem 9. A group G is solvable if and only if G<n> = 1 for some n ::: 0. 

Proof: Assume first that G is solvable and so possesses a series 

1 = Ho :'9 H1 :'9 · · · :'9 Hs = G 

such that each factor H;+ 1 I H; is abelian. We prove by induction that G<n .::: Hs-i . This 
is true for i = 0, so assume G(i) .::: Hs-i . Then 

G<i+1> = [G<i> , G<i) ] .::: [Hs-i • Hs-; ]. 

Since Hs-dHs-i-1 is abelian, by Proposition 5.7(4), [Hs-i • Hs-i 1  .::: Hs-i-1 ·  Thus 
G<i+1> .::: Hs-i-t . which completes the induction. Since Ho = 1 we have G<s> = 1 .  

Conversely, if G<n> = 1 for some n ::: 0, Proposition 5 .7(4) shows that if we take 
H; to be G<n-i) then H; is a normal subgroup of Hi+l with abelian quotient, so the 
derived series itself satisfies the defining condition for solvability of G. This completes 
the proof. 

If G is solvable, the smallest nonnegative n for which G<n> = 1 is called the 
solvable length of G. The derived series is a series of shortest length whose successive 
quotients are abelian and it has the additional property that it consists of subgroups that 
are characteristic in the whole group (as opposed to each just being normal in the next 
in the initial definition of solvability). Its "intrinsic" definition also makes it easier to 
work with in many instances, as the following proposition (which reproves some results 
and exercises from Section 3.4) illustrates. 

Proposition 10. Let G and K be groups, let H be a subgroup of G and let q; : G -+ K 
be a surjective homomorphism. 

(1) H(i) .::: G(i) for all i ::: 0. In particular, if G is solvable, then so is H, i.e., 
subgroups of solvable groups are solvable (and the solvable length of H is less 
than or equal to the solvable length of G). 
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(2) q; (G <i) ) = K (i) . In particular, homomorphic images and quotient groups of 
solvable groups are solvable (of solvable length less than or equal to that of the 
domain group). 

(3) If N is normal in G and both N and GIN are solvable then so is G. 

Proof Part 1 follows from the observation that since H ::::: G ,  by definition of 
commutator subgroups, [H, H] ::::: [G, G], i.e., H(l) ::::: G(l) .  Then, by induction, 

H(il ::S: c<il for all i E z+ . 
In particular, if c<n> = 1 for some n, then also H(n) = 1 .  This establishes ( 1 ). 

To prove (2) note that by definition of commutators, 

q; ([x , y]) = [q; (x) ,  q; (y)] 

so by induction q; (G(il ) ::::: K U) . Since q; is smjective, every commutator in K is the 
image of a commutator in G, hence again by induction we obtain equality for all i . 
Again, if c<n> = 1 for some n then K<n> = 1 .  This proves (2). 

Finally, if GIN and N are solvable, of lengths n and m respectively then by (2) 
applied to the natural projection q; : G --+ GIN we obtain 

q; (G <n> ) = (GIN) <n> = 1 N  

i.e. , c<n> _::::: N. Thus c<n+m) = (G<n> ) <m> ::::: N<m> = 1 .  Theorem 9 shows that G is 
solvable, which completes the proof. 

Some additional conditions under which finite groups are solvable are the following: 

Theorem 11. Let G be a finite group. 
(1) (Burnside) If I G I  = p0qb for some primes p and q, then G is solvable. 
(2) (Philip Hall) If for every prime p dividing I G I  we factor the order of G as 

I G I  = p0m where (p, m) = 1 ,  and G has a subgroup of order m, then G is 
solvable (i.e., if for all primes p, G has a subgroup whose index equals the order 
of a Sylow p-subgroup, then G is solvable - such subgroups are called Sylow 
p-complements). 

(3) (Feit-Thompson) If I G I  is odd then G is solvable. 
(4) (Thompson) If for every pair of elements x ,  y E G, { x, y ) is a solvable group, 

then G is solvable. 

We shall prove Burnside's Theorem in Chapter 1 9  and deduce Philip Hall's gener
alization of it. As mentioned in Section 3.5, the proof of the Feit-Thompson Theorem 
takes 255 pages. Thompson's Theorem was first proved as a consequence of a 475 page 
paper (that in tum relies ultimately on the Feit-Thompson Theorem). 

A Proof of the Fundamental  Theorem of Finite Abelian Groups 

We sketch a group-theoretic proof of the result that every finite abelian group is a 
direct product of cyclic groups (i.e., Parts 1 and 2 of Theorem 5, Section 5.2) - the 
Classification of Finitely Generated Abelian Groups (Theorem 3, Section 5.2) will be 
derived as a consequence of a more general theorem in Chapter 1 2. 
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By Corollary 4 it suffices to prove that for p a prime, any abelian p-group is a direct 
product of cyclic groups (the divisibility condition in Theorem 5.5 is trivially achieved 
by reordering factors). Let A be an abelian p-group. We proceed by induction on ! A I .  

If E is an elementary abelian p-group (i.e., xP = l for all x E E), we first prove 
the following result: 

for any x E E,  there exists M :=:: E with E = M x ( x  ) . 

If x = 1 ,  let M = E. Otherwise let M be a subgroup of E of maximal order subject to 
the condition that x not be an element of M. If M is not of index p in E, let E = E j M. 
Then E is elementary abelian and there exists y E E - ( :X ) .  Since y has order p, we 
also have :X ¢ ( y ) .  The complete preimage of ( y )  in E is a subgroup of E that does 
not contain x and whose order is larger than the order of M, contrary to the choice of 
M. This proves I E  : Ml = p, hence 

E = M ( x ) and M n ( x ) = l .  
By the recognition theorem for direct products, Theorem 5 .9, E = M x ( x ) , as asserted. 

Now let <p : A ---+ A be defined by q;(x) = xP (see Exercise 7, Section 5.2). Then 
<p is a homomorphism since A is abelian. Denote the kernel of <p by K and denote the 
image of <p by H. By definition K = {x E A I xP = 1 }  and H is the subgroup of A 
consisting of p1h powers. Note that both K and A/ H are elementary abelian. By the 
First Isomorphism Theorem 

lA : H I = I K I .  

B y  induction, 

H = ( h! } X · · · X ( hr )  

� zp"l X • • • X Zp"r a; � 1 ,  i = 1 , 2, . . . ' r. 

By definition of <p, there exist elements g; E A such that gf = h; ,  1 :=:: i :=:: r .  Let 
Ao = ( gl ,  · · · , gr ) . It is an exercise to see that 

(a) Ao = ( gl ) x · · · x ( gr ) , 
(b) Aof H = ( gl H ) x · · · x ( grH ) is elementary abelian of order p

r
, and 

t.q - J  ar -1  
(c) H n K = ( hf ) x · · · x ( hf ) is elementary abelian of order pr. 

If K is contained in H, then I K I  = IK n HI = pr = lAo : H I . In this case by 
comparing orders we see that A0 = A and the theorem is proved. Assume therefore 
that K is not a subgroup of H and use the bar notation to denote passage to the quotient 
group A j H. Let x E K - H, so I :XI = lx I = p. By the initial remark of the proof 
applied to the elementary abelian p-group E = A, there is a subgroup M of A such 
that 

A =  M X { :X ) . 

If M is the complete preimage in A of M, then since x has order p and x ¢ M, we have 
( x ) n M = 1 .  By the recognition theorem for direct products, 

A = M x ( x ) . 
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By induction, M is a direct product of cyclic groups, hence so is A. This completes the 
proof. 

The uniqueness of the decomposition of a finite abelian group into a direct product 
of cyclic groups (Part 3 of Theorem 5.5) can also be proved by induction using the pth
power map (i.e., using Exercise 7, Section 5.2). This is essentially the procedure we 
follow in Section 1 2. 1  for the uniqueness part of the proof of the Fundamental Theorem 
of Finitely Generated Abelian Groups. 

E X E R C I S E S 

1. Prove that Z; (G) is a characteristic subgroup of G for all i .  
2. Prove Parts 2 ·and 4 of Theorem 1 for G a finite nilpotent group, not necessarily a p-group. 

3. If G is finite prove that G is nilpotent if and only if it has a normal subgroup of each order 
dividing I G I ,  and is cyclic if and only if it has a unique subgroup of each order dividing I G 1 .  

4 .  Prove that a maximal subgroup o f  a finite nilpotent group has prime index. 

5. Prove Parts 2 and 4 of Theorem 1 for G an infinite nilpotent group. 

6. Show that if G I Z (G) is nilpotent then G is nilpotent. 

7. Prove that subgroups and quotient groups of nilpotent groups are nilpotent (your proof 
should work for infinite groups). Give an explicit example of a group G which possesses 
a normal subgroup H such that both H and G I H are nilpotent but G is not nilpotent. 

8. Prove that if p is a prime and P is a non-abelian group of order p3 then I Z(P) I = p and 
PIZ(P) � Zp x Zp. 

9. Prove that a finite group G is nilpotent if and only if whenever a ,  b E G  with ( la l , lb l )  = 1 
then ab = ba . [Use Part 4 of Theorem 3.] 

10. Prove that Dzn is nilpotent if and only if n is a power of 2. [Use Exercise 9.] 

11. Give another proof of Proposition 5 under the additional assumption that G is abelian by 
invoking the Fundamental Theorem of Finite Abelian Groups. 

12. Find the upper and lower central series for A4 and S4. 

13. Find the upper and lower central series for An and Sn . n :=:: 5. 

14. Prove that Gi is a characteristic subgroup of G for all i .  
15. Prove that Z; (Dzn ) = D2"-l-i . 
16. Prove that Q has no maximal subgroups. [Recall Exercise 2 1 ,  Section 3.2.] 

17. Prove that G(i) is a characteristic subgroup of G for all i .  

18. Show that i f  G' 1 G" and G "  1 G"' are both cyclic then G "  = 1 .  [You may assume G"' = 1 .  
Then GI G" acts by conjugation on the cyclic group G" .] 

19. Show that there is no group whose commutator subgroup is isomorphic to S4. [Use the 
preceding exercise.] 

20. Let p be a prime, let P be a p-subgroup of the finite group G, let N be a normal subgroup 
of G whose order is relatively prime to p and let G = G 1 N. Prove the following: 
(a) Nc;(P) = NG(P) [Use Frattini's Argument.] 

(b) Cc;(P) = CG(P) . [Use part (a).] 

For any group G the Frattini subgroup of G (denoted by cp {G)) is defined to be the intersection 
of all the maximal subgroups of G (if G has no maximal subgroups, set cp (G) = G). The next 
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few exercises deal with this important subgroup. 

21. Prove that IP (G) is a characteristic subgroup of G. 
22. Prove that if N � G then iP (N) :::= IP (G). Give an explicit example where this containment 

does not hold if N is not normal in G. 
23. Compute IP (S3), IP (A4), IP (S4) ,  IP (A5) and IP (S5). 

24. Say an element x of G is a nongenerator if for every proper subgroup H of G, ( x ,  H ) 
is also a proper subgroup of G. Prove that 4> (G) is the set of nongenerators of G (here 
I G I > 1 ). 

25. Let G be a finite group. Prove that IP (G) is nilpotent. [Use Frattini's Argument to prove 
that every Sylow subgroup of IP (G) is normal in G .] 

26. Let p be a prime, let P be a finite p-group and let P = P I4> (P) . 
(a) Prove that P is an elementary abelian p-group. [Show that P' :::= IP(P) and that 

xP E IP (P) for all x E P .] 
(b) Prove that if N is any normal subgroup of P such that PIN is elementary abelian 

then IP (P) ::=: N. State this (universal) property in terms of homomorphisms and 
commutative diagrams. 

(c) Let P be elementary abelian of order pr (by (a)). Deduce from Exercise 24 that if 
XJ , x2 , . . .  , X

r 
are any basis for the r-dimensional vector space P over Fp and if x; 

is any element of the coset x; , then P = ( XI ,  x2 , . . .  , Xr ). Show conversely that 
if Yt . Y2 • . . .  , Ys is any set of generators for P, then s � r (you may assume that 
every minimal generating set for an r-dimensional vector space has r elements, i .e., 
every basis has r elements). Deduce Burnside 's Basis Theorem: a set YI • . . .  , Ys is 
a minimal generating set for P if and only if YI • . . .  , Ys is a basis of P = P IIP(P).  
Deduce that any minimal generating set for P has r elements. 

(d) Prove that if P I4> (P) is cyclic then P is cyclic. Deduce that if PIP' is cyclic then 
so is P.  

(e) Let a be any automorphism of P of prime order q with q =1 p. Show that if a fixes 
the coset x 4> (P) then a fixes some element of this coset (note that since IP (P) is 
characteristic in P every automorphism of P induces an automorphism of P IIP (P)). 
[Use the observation that a acts a permutation of order I or q on the pa elements in 
the coset xiP (P).] 

(f) Use parts (e) and (c) to deduce that every nontrivial automorphism of P of order 
prime to p induces a nontrivial automorphism on P IIP (P).  Deduce that any group 
of automorphisms of P which has order prime to p is isomorphic to a subgroup of 
Aut(P) = GLr (Fp).  

27. Generalize part (d) of the preceding exercise as follows: let p be a prime, let P be a p-group 
- pr - 1  

and let P = PI 4> ( P) be elementary abelian of order pr . Prove that P has exactly --
p - 1 

maximal subgroups. [Since every maximal subgroup of P contains IP (P), the maximal 
subgroups of P are, by the Lattice Isomorphism Theorem, in bijective correspondence 
with the maximal subgroups of the elementary abelian group P. It therefore suffices to 
show that the number of maximal subgroups of an elementary abelian p-group of order 
pr is as stated above. One way of doing this is to use the result that an abelian group is 
isomorphic to its dual group (cf. Exercise 14 in Section 5.2) so the number of subgroups 
of index p equals the number of subgroups of order p.J  

28. Prove that if p is a prime and P = Zp x ZP2 then I IP (P) I = p and P I4>(P) � Zp x Zp . 
Deduce that P has p + 1 maximal subgroups. 
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29. Prove that if p is a prime and P is a non-abelian group of order p3 then t!J(P) = Z(P) 
and P I<P(P) � Zp x Zp . Deduce that P has p +  1 maximal subgroups. 

30. Let p be an odd prime, let P1 = Zp x ZP2 and let P2 be the non-abelian group of order p3 

which has an element of order p2 . Prove that P1 and P2 have the same lattice of subgroups. 

31. For any group G a minimal normal subgroup is a normal subgroup M of G such that the 
only normal subgroups of G which are contained in M are 1 and M. Prove that every 
minimal normal subgroup of a finite solvable group is an elementary abelian p-group 
for some prime p. [If M is a minimal normal subgroup of G, consider its characteristic 
subgroups : M' and ( xP 1 x E M } .] 

32. Prove that every maximal subgroup of a finite solvable group has prime power index. [Let 
H be a maximal subgroup of G and let M be a minimal normal subgroup of G - cf. 
the preceding exercise. Apply induction to G I M and consider separately the two cases: 
M :::; H and M f:. H.] 

33. Let rr be any set of primes. A subgroup H of a finite group is called a Hall rr -subgroup of G 
ifthe only primes dividing I H I  are in the set rr and I H I  is relatively prime to I G  : H I .  (Note 
that if rr = {p},  Hall rr-subgroups are the same as Sylow p-subgroups. Hall subgroups 
were introduced in Exercise 10 of Section 3 .3). Prove the following generalization of 
Sylow's Theorem for solvable groups: if G is a finite solvable group then for every set rr 
of primes, G has a Hall rr -subgroup and any two Hall rr -subgroups (for the same set rr) 
are conjugate in G. [Fix rr and proceed by induction on I G I ,  proving both existence 
and conjugacy at once. Let M be a minimal normal subgroup of G, so M is a p-group for 
some prime p. If p E rr, apply induction to G I M. If p ¢ rr,  reduce to the case I G I = pan, 
where pa = IM I  and n is the order of a Hall rr-subgroup of G. In this case let N IM be 
a minimal normal subgroup of G 1M, so N I M is a q-group for some prime q # p. Let 
Q E Sylq (N). If Q :::! G argue as before with Q in place of M. If Q is not normal in G,  
use Frattini' s Argument to show N c ( Q) is  a Hall rr -subgroup of G and establish conjugacy 
in this case too.] 

The following result shows how to produce normal p-subgroups of some groups on which 
the elements of order prime to p act faithfully by conjugation. Exercise 26(f) then applies to 
restrict these actions and give some information about the structure of the group. 

34. Let p be a prime dividing the order of the finite solvable group G .  Assume G has no 
nontrivial normal subgroups of order prime to p. Let P be the largest normal p-subgroup 
of G (cf. Exercise 37, Section 4.5). Note that Exercise 3 1  above shows that P ;:f: 1 .  Prove 
that Cc(P) :::; P, i.e., Cc (P) = Z(P).  [Let N = Cc(P) and use the preceding exercise 
to show N = Z(P) x H for some Hall rr-subgroup H of N - here rr is the set of all prime 
divisors of IN I  except for p. Show H :::! G to obtain the desired conclusion: H = 1 .] 

35. Prove that if G is a finite group in which every proper subgroup is nilpotent, then G 
is solvable. [Show that a minimal counterexample is simple. Let M and N be distinct 
maximal subgroups chosen with IM n N l  as large as possible and apply Part 2 of Theorem 
3 to show that M n N = 1 .  Now apply the methods of Exercise 53 in Section 4.5.] 

36. Let p be a prime, let V be a nonzero finite dimensional vector space over the field of p 
elements and let ifJ be an element of GL(V) of order a power of p (i.e., V is a nontrivial 
elementary abelian p-group and ifJ is an automorphism of V of p-power order). Prove that 
there is some nonzero element v E V such that ifJ(v) = v, i.e., ifJ has a nonzero fixed point 
on V. 

37. Let V be a finite dimensional vector space over the field of 2 elements and let ifJ be an 
element of G L(V) of order 2. (i.e. ,  V is a nontrivial elementary abelian 2-group and ifJ is an 
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automorphism of V of order 2). Prove that the map v � v+q:>(  v) is a homomorphism from 
V to itself. Show that every element in the image of this map is fixed by q:>.  Deduce that the 
subspace of elements of V which are fixed by q:> has dimension :::: � (dimension V). (Note 
that if G is the sernidirect product of V with ( q:> ) ,  where V � G and q:> acts by conjugation 
on V by sending each v E V to q:>(v), then the fixed points of q:> on V are Cv (q:>) and the 
above map is simply the commutator map: v � [v , q:>]. In this terminology the problem 
is to show that ICv (q:>) l2 :::: l V I .) 

38. Use the preceding exercise to prove that if P is a 2-group which has a cyclic center and 
M is a subgroup of index 2 in P, then the center of M has rank ::s 2. [The group G f M of 
order 2 acts by conjugation on the IFz vector space: {z E Z(M) 1 z2 = 1 }  and the fixed 
points of this action are in the center of P . ]  

6.2 APPLICATIONS I N  GROUPS OF MEDIUM ORDER 

The purpose of this section is to work through a number of examples which illustrate 
many of the techniques we have developed. These examples use Sylow's Theorems ex
tensively and demonstrate how they are applied in the study of finite groups. Motivated 
by the Holder Program we address primarily the problem of showing that for certain 
n every group of order n has a proper, nontrivial normal subgroup (i.e .• there are no 
simple groups of order n ). In most cases we shall stop once this has been accomplished. 
However readers should be aware that in the process of achieving this result we shall 
already have determined a great deal of information about arbitrary groups of given 
order n for the n that we consider. This information could be built upon to classify 
groups of these orders (but in general this requires techniques beyond the simple use of 
semidirect products to construct groups). 

Since for p a prime we have already proved that there are no simple p-groups 
(other than the cyclic group of order p, Zp) and since the structure of p-groups can be 
very complicated (recall the table in Section 5.3), we shall not study the structure of 
p-groups explicitly. Rather, the theory of p-groups developed in the preceding section 
will be applied to subgroups of groups of non-prime-power order. 

Finally, for certain n (e.g., 60, 168, 360, 504, . . .  ) there do exist simple groups of 
order n so, of course, we cannot force every group of these orders to be nonsimple. 
As in Section 4.5 we can, in certain cases, prove there is a unique simple group of 
order n and unravel some of its internal structure (Sylow numbers, etc.). We shall study 
simple groups of order 168 as an additional test case. Thus the Sylow Theorems will 
be applied in a number of different contexts to show how groups of a given order may 
be manipulated. 

We shall end this section with some comments on the existence problem for groups, 
particularly for finite simple groups. 

For n < 10000 there are 60 odd, non-prime-power numbers for which the congru
ence conditions of Sylow's Theorems do not force at least one of the Sylow subgroups 
to be normal i.e., n P can be > 1 for all primes p I n (recall that n P denotes the number 
of Sylow p-subgroups). For example, no numbers of the form pq, where p and q are 
distinct primes occur in our list by results of Section 4.5. In contrast, for even numbers 
< 500 there are already 46 candidates for orders of simple groups (the congruence 
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conditions allow many more possibilities). Many of our numerical examples arise from 
these lists of numbers and we often use odd numbers because the Sylow congruence 
conditions allow fewer values for np . The purpose of these examples is to illustrate the 
use of the results we have proved. Many of these examples can be dealt with by more 
advanced techniques (for example, the Feit-Thompson Theorem proves that there are 
no simple groups of odd composite order). 

As we saw in the case n = 30 in Section 4.5, even though Sylow's Theorem 
permitted ns = 6 and n3 = 10, further examination showed that any group of order 30 
must have both ns = 1 and n3 = 1. Thus the congruence part of Sylow's Theorem is a 
sufficient but by no means necessary condition for normality of a Sylow subgroup. For 
many n (e.g. ,  n = 120) we can prove that there are no simple groups of order n, so there 
is a nontrivial normal subgroup but this subgroup may not be a Sylow subgroup. For 
example, Ss and SL2 (1Fs) both have order 120. The group Ss has a unique nontrivial 
proper normal subgroup of order 60 (As ) and SL2 (lFs) has a unique nontrivial proper 
normal subgroup of order 2 (Z(SL2 (1Fs)) � Z2), neither of which is a Sylow subgroup. 
Our techniques for producing normal subgroups must be flexible enough to cover such 
diverse possibilities. In this section we shall examine Sylow subgroups for different 
primes dividing n, intersections of Sylow subgroups, normalizers of p-subgroups and 
many other less obvious subgroups. The elementary methods we outline are by no 
means exhaustive, even for groups of "medium" order. 

Some Techniques 

Before listing some techniques for producing normal subgroups in groups of a given 
("medium") order we note thlilt in all the problems where one deals with groups of 
order n, for some specific n, it is first necessary to factor n into prime powers and then 
to compute the permissible values of np, for all primes p dividing n. We emphasize 
the need to be comfortable computing mod p when carrying out the last step. The 
techniques we describe may be listed as follows: 

(1) Counting elements. 
(2) Exploiting subgroups of small index. 
(3) Permutation representations. 
(4) Playing p-subgroups off against each other for different primes p .  
(5) Studying normalizers of  intersections of  Sylow p-subgroups. 

Counting Elements 

Let G be a group of order n, let p be a prime dividing n and let P E Sylp (G). If 
I P I  = p, then every nonidentity element of P has order p and every element of G of 
order p lies in some conjugate of P. By Lagrange's Theorem distinct conjugates of P 
intersect in the identity, hence in this case the number of elements of G of order p is 
np (P - 1 ) .  

If Sylow p-subgroups for different primes p have prime order and we assume none 
of these is normal, we can sometimes show that the number of elements of prime order 
is > IG I .  This contradiction would show that at least one of the np's must be 1 (i.e., 
some Sylow subgroup is normal in G). 

This is the argument we used (in Section 4.5) to prove that there are no simple 
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groups of order 30. For another example, suppose I G I  = 1 05 = 3 · 5 · 7. If G were 
simple, we must have n3 = 7, n5 = 2 1  and n7 = 15 .  Thus 

the number of elements of order 3 is 7 · 2 
the number of elements of order 5 is 2 1  · 4 
the number of elements of order 7 is 1 5  · 6 

the number of elements of prime order is 188  

14 
= 84 

90 

> I G I . 

Sometimes counting elements of prime order does not lead to too many elements. 
However, there may be so few elements remaining that there must be a normal subgroup 
involving these elements. This was (in essence) the technique used in Section 4.5 to 
show that in a group of order 12  either n2 = 1 or n3 = 1. This technique works 
particularly well when G has a Sylow p-subgroup P of order p such that Nc (P) = P. 
For example, let IG I  = 56. I f  G were simple, the only possibility for the number of 
Sylow ?-subgroups is 8, so 

the number of elements of order 7 is 8 · 6 = 48. 

Thus there are 56 - 48 = 8 elements remaining in G. Since a Sylow 2-subgroup 
contains 8 elements (none of which have order 7), there can be at most one Sylow 
2-subgroup, hence G has a normal Sylow 2-subgroup. 

Exploiting Subgroups of Small Index 

Recall that the results of Section 4.2 show that if G has a subgroup H of index k, 
then there is a homomorphism from G into the symmetric group Sk whose kernel is 
contained in H. If k > 1 ,  this kernel is a proper normal subgroup of G and if we are 
trying to prove that G is not simple, we may, by way of contradiction, assume that this 
kernel is the identity. Then, by the First Isomorphism Theorem, G is isomorphic to a 
subgroup of Sk . In particular, the order of G divides k ! .  This argument shows that if k 
is the smallest integer with I G I  dividing k !  for a finite simple group G then G contains 
no proper subgroups of index less than k. This smallest permissible index k should be 
calculated at the outset of the study of groups of a given order n.  In the examples we 
consider this is usually quite easy: n will often factor as 

and as is usually equal to 1 or 2 in our examples. In this case the minimal index of a 
proper subgroup will have to be at least Ps (respectively 2ps) and this is often its exact 
value. 

For example, there is no simple group of order 3393, because if n = 3393 = 
32 

• 13  · 29, then the minimal index of a proper subgroup is 29 (n does not divide 28 ! 
because 29 does not divide 28 !). However any simple group of order 3393 must have 
n3 = 13 ,  so for P E SyfJ (G), Nc (P) has index 13 ,  a contradiction. 

Permutation Representations 

This method is a refinement of the preceding one. As above, if G is a simple group of 
order n with a proper subgroup of index k, then G is isomorphic to a subgroup of Sk. 
We may identify G with this subgroup and so assume G _:::: Sk . Rather than relying only 
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on Lagrange's Theorem for our contradiction (this was what we did for the preceding 
technique) we can sometimes show by calculating within Sk that Sk contains no simple 
subgroup of order n .  Two restrictions which may enable one to show such a result are 

(1) if G contains an element or subgroup of a particular order, so must Sk. and 
(2) if P E Sylp (G) and if P is also a Sylow p-subgroup of Sk. then ING(P) i must 

divide INsk (P) i .  
Condition (2) arises frequently when p is a prime, k = p or p + 1 and G has a 

subgroup of index k. In this case p2 does not divide k!,  so Sylow p-subgroups of G are 
also Sylow p-subgroups of Sk . Since now Sylow p-subgroups of Sk are precisely the 
groups generated by a p-cycle, and distinct Sylow p-subgroups intersect in the identity, 

the no. of p-cycles 
the no. of Sylow p-subgroups of Sk = _______ __::...._.:..__ ____ _ 

the no. of p-cycles in a Sylow p-subgroup 

k . (k - 1 )  . . . (k - p + 1) 
= -----------

p(p - 1 )  
This number gives the index in Sk of the normalizer of a Sylow p-subgroup of Sk . Thus 
for k = p or p + 1 

(k = p or k  = p + 1)  

( cf. also the corresponding discussion for centralizers of elements in symmetric groups 
in Section 4.3 and the last exercises in Section 4.3). This proves, under the above 
hypotheses, that ING(P) I  must divide p (p - 1 ) .  

For example, i f  G were a simple group of order 396 = 22 · 32 · 1 1 , w e  must have 
nu = 12, so if P E Sylu (G), i G  : NG(P) I = 1 2  and ING (P) i = 33. Since G has 
a subgroup of index 12, G is isomorphic to a subgroup of S12 • But then (considering 
G as actually contained in Su) P E Sylu (St2) and 1Ns1 2 (P) I  = 1 10. Since NG(P) :S 
Ns,2 (P), this would imply 33 I 1 10, clearly impossible, so we cannot have a simple 
group of order 396. 

We can sometimes squeeze a little bit more out of this method by working in Ak 
rather than Sk . This slight improvement helps only occasionally and only for groups of 
even order. It is based on the following observations (the first of which we have made 
earlier in the text). 

Proposition 12. 
(1) If G has no subgroup of index 2 and G :S Sk. then G =s Ak . 
(2) If P E Sylp (Sk) for some odd prime p, then P E Sylp(Ak) and iNAk (P) i = 

� iNsk (P) i .  

Proof" The first assertion follows from the Second Isomorphism Theorem: if G is 
not contained in Ak. then Ak < G Ak so we must have G Ak = Sk . But now 

2 =  i Sk : Ak i = iGAk : Ak i = IG : G n Ak i 
so G has a subgroup, G n Ab of index 2. 
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To prove (2) note that if P E Sylp (Sk), for some odd prime p, by ( 1 )  (or order con
siderations) P ::::: Ak> hence P E Sylp (Ak) as well. By Frattini's Argument (Proposition 
6) 

Sk = Nsk (P)Ak 
so, in particular, N sk ( P) is not contained in Ak . This forces N sk ( P) n Ak ( = N Ak ( P)) 
to be a subgroup of index 2 in N St. (P). 

For example, there is no simple group of order 264. Suppose G were a simple 
group of order 264 = 23 • 3 · 1 1 . We must have n n = 12. As usual, G would be 
isomorphic to a subgroup of S12 . Since G is simple (hence contains no subgroup of 
index 2), G ::::: A 12 · Let P E Sylu (G). Since n u  = 12 = IG : Nc (P} I ,  we have 
INc (P) I  = 22. As above, 

INA ,2 (P) I = ! 1Ns,2 (P) I = ! 1 1 ( 1 1 - 1 )  = 55; 

however, 22 does not divide 55, a contradiction to Nc(P) ,::::: NA,2 (P). 
Finally, we emphasize that we have only barely touched upon the combinatorial 

information available from certain permutation representations. Whenever possible in 
the remaining examples we shall illustrate other applications of this technique. 

Playing p-Subgroups Off Against Each Other for Different Primes p 

Suppose p and q are distinct primes such that every group of order pq is cyclic. This 
is equivalent to p f q - 1, where p < q .  If G has a Sylow q-subgroup Q of order 
q and p I INc (Q} I ,  applying Cauchy's Theorem in Nc(Q) gives a group P of order 
p normalizing Q (note that P need not be a Sylow p-subgroup of G). Thus P Q is a 
group and if P Q is abelian, we obtain 

PQ ::::: Nc (P) and so q I INc (P) I .  
(A symmetric argument applies if Sylow p-subgroups of G have order p and q divides 
the order of a Sylow p-normalizer). This numerical information alone may be sufficient 
to force Nc (P) = G (i.e., P � G), or at least to force Nc(P) to have index smaller than 
the minimal index permitted by permutation representations, giving a contradiction by 
a preceding technique. 

For example, there are no simple groups of order 1785. If there were, let G be 
a simple group of order 1785 = 3 · 5 · 7 · 17.  The only possible value for n17 is 
35, so if Q is a Sylow 17-subgroup, I G : Nc (Q) I  = 35. Thus INc (Q) I  = 3 · 17.  
Let P be a Sylow 3-subgroup of Nc(Q). The group P Q  is  abelian since 3 does not 
divide 17 - 1 ,  so Q ,::::: Nc (P) and 17 I INc (P) I .  In this case P E Syl3 (G). The 

permissible values of n3 are 7, 85 and 595; however, since 17  I INc (P) I ,  we cannot 

have 17 I I G  : Nc (P) I = n3 . Thus n3 = 7. But G has no proper subgroup of index 
< 17  (the minimal index of a proper subgroup is 17  for this order), a contradiction. 
Alternatively, if n3 = 7, then INc (P) I = 3 · 5 · 17, and by Sylow's Theorem applied in 
Nc(P) we have Q � Nc (P}. This contradicts the fact that INc (Q) I  = 3 · 17 .  

We can refine this method by not requiring P and Q to be of prime order. Namely, 
if p and q are distinct primes dividing I G I such that Q E Sylq (G) and p I INc(Q) I , 
let P E Sylp (Nc (Q)) . We can then apply Sylow's Theorems in Nc(Q) to see whether 
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P � Na ( Q), and if so, force Nc (P) to be of small index. If P is a Sylow p-subgroup of 
the whole group G, we can use the congruence part of Sylow's Theorem to put further 
restrictions on I Nc (P) I (as we did in the preceding example).  If P is not a Sylow 
p-subgroup of G, then by the second part of Sylow's Theorem P ::=: P"' E Sylp (G) . In 
this case since P < P*,  Theorem 1 (4) shows that P < Np· (P) .  Thus NG (P) (which 
contains N p• ( P)) has order divisible by a larger power of p than divides I P  1 (as well 
as being divisible by I Q 1 ) .  

For example, there are no simple groups of order 3675. If there were, let G be 
a simple group of order 3675 = 3 · 52 · 72 . The only possibility for n7 is 15 ,  so for 
Q E Syl7 (G), I G : Nc ( Q ) I  = 1 5 and I NG ( Q) I  = 245 = 5 · 72 . Let N = Nc ( Q) and 
let P E Syls (N). By the congruence conditions of Sylow's Theorem applied in N we 
get P � N. Since I P I  = 5, P is not itself a Sylow 5-subgroup of G so P is contained 
in some Sylow 5-subgroup P* of G. Since P is of index 5 in the 5-group P*,  P � P* 
by Theorem 1, that is P* ::=: Nc (P) .  This proves 

(N. P*) :::: Nc (P) so 72 · 52 J I Nc (P) I .  

Thus I G  : NG (P) I J 3 ,  which is impossible since P is not normal and G has no 
subgroup of index 3.  

Studying Normal izers of Intersections of Sylow p-Subgroups 

One of the reasons the counting arguments in the first method above do not immediately 
generalize to Sylow subgroups which are not of prime order is because if P E Sylp ( G) 
for some prime p and I P I  = pa , a � 2, then it need not be the case that distinct 
conjugates of P intersect in the identity subgroup. If distinct conjugates of P do 
intersect in the identity, we can again count to find that the number of elements of 
p-power order is np( I P I  - 1 ) . 

Suppose, however, there exists R E Sylp(G) with R f:. P and P n R f:. 1 .  Let 
Po = P n R.  Then Po < P and Po < R, hence by Theorem 1 

Po < Np ( Po) and Po < NR (Po) .  

One can try to use this to prove that the normalizer in G of Po is  sufficiently large (i.e., 
of sufficiently small index) to obtain a contradiction by previous methods (note that this 
normalizer is a proper subgroup since Po f:. 1 ) . 

One special case where this works particularly well is when I Po l  = pa-t i.e., the 
two Sylow p-subgroups R and P have large intersection. In this case set N = Nc ( P0) .  
Then by the above reasoning (i.e. ,  since Po is  a maximal subgroup of the p-groups P 
and R), P0 � P and P0 � R, that is, 

N has 2 distinct Sylow p-subgroups: P and R.  

In particular, I N I  = pak, where (by Sylow's Theorem) k � p + 1 .  
Recapitulating, if Sylow p-subgroups pairwise intersect in the identity, then count

ing elements of p-power order is possible; otherwise there is some intersection of Sylow 
p-subgroups whose normalizer is "large." Since for an arbitrary group order one cannot 
necessarily tell which of these two phenomena occurs, it may be necessary to split the 
nonsimplicity argument into two (mutually exclusive) cases and derive a contradiction 
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in each. This process is especially amenable when the order of a Sylow p-subgroup is 
p2 (for example, this line of reasoning was used to count elements of 2-power order in 
the proof that a simple group of order 60 is isomorphic to A5 - Proposition 23, Section 
4.5). 

Before proceeding with an example we state a lemma which gives a sufficient 
condition to force a nontrivial Sylow intersection. 

Lemma 13. In a finite group G if np ¢. 1 (mod p2), then there are distinct Sylow 
p-subgroups P and R of G such that P n R is of index p in both P and R (hence is 
normal in each). 

Proof" The argument is an easy refinement of the proof of the congruence part of 
Sylow's Theorem ( cf. the exercises at the end of Section 4.5). Let P act by conjugation 
on the set Sylp (G). Let 01 , • • •  , 0., be the orbits under this action with 01 = {P} .  If 
p2 divides I P : P n R l  for all Sylow p-subgroups R of G different from P, then each 
(')i has size divisible by p2, i = 2, 3, . . .  , s .  In this case, since np is the sum of the 
lengths of the orbits we would have nP = 1 + kp2, contrary to assumption. Thus for 
some R E Sylp (G), I P  : P n R l = p. 

For example, there are no simple groups of order 1053 . If there were, let G be a 
simple group of order 1053 = 34 · 13 and let P E Syl3 (G). We must have n3 = 13 .  
But 13  ¢. 1 (mod 32) so there exist P,  R E Syl3 (G) such that IP n R l  = 33 . Let 
N = NG(P n R), so by the above arguments P ,  R � N. Thus 34 I IN I and IN I  > 34• 
The only possibility is N = G, i.e., P n R ::9 G, a contradiction. 

Simple Groups of Order 1 68 

We now show how many of our techniques can be used to unravel the structure of 
and then classify certain simple groups by classifying the simple groups of order 168. 
Because there are no nontrivial normal subgroups in simple groups, this process departs 
from the methods in Section 5.5, but the overall approach typifies methods used in the 
study of finite simple groups. 

We begin by assuming there is a simple group G of order 168 = 23 • 3 · 7. We 
first worl< out many of its properties: the number and structure of its Sylow subgroups, 
the conjugacy classes, etc. All of these calculations are based only on the order and 
simplicity of G. We use these results to first prove the uniqueness of G; and ultimately 
we prove the existence of the simple group of order 168. 

Because I G I does not divide 6!  we have 

( 1 )  G has no proper subgroup of index less than 7, 

since otherwise the action of G on the cosets of the subgroup would give a (necessarily 
injective since G is simple) homomorphism from G into some Sn with n � 6. 

The simplicity of G and Sylow's Theorem also immediately imply that 

(2) n1 = 8, so the normalizer of a Sylow ?-subgroup has order 21. In particular, no 
element of order 2 normalizes a Sylow ?-subgroup and G has no elements of order 14. 
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If G had an element of order 21  then the normalizer of a Sylow 3-subgroup of G would 
have order divisible by 7. Thus n3 would be relatively prime to 7. Since then n3 I 8 we 
would have n3 = 4 contrary to ( 1 ). This proves: 

(3) G has no elements of order 21. 
By Sylow's Theorem n3 = 7 or 28; we next rule out the former possibility. Assume 
n3 = 7, let P E Syl3 (G) and let T be a Sylow 2-subgroup of the group Nc (P) of order 
24. Each Sylow 3-subgroup normalizes some Sylow ?-subgroup of G so P normalizes 
a Sylow ?-subgroup R of G. For every t E T we also have that P = t Pr1 normalizes 
t Rt-1 • The subgroup T acts by conjugation on the set of eight Sylow ?-subgroups of G 
and since no element of order 2 in G normalizes a Sylow ?-subgroup by (2), it follows 
that T acts transitively, i.e. , every Sylow ?-subgroup of G is one of the t Rt-1 . Hence 
P normalizes every Sylow ?-subgroup of G, i.e., P is contained in the intersection 
of the normalizers of all Sylow ?-subgroups. But this intersection is a proper normal 
subgroup of G, so it must be trivial. This contradiction proves: 

(4) n3 = 28 and the normalizer of a Sylow 3-subgroup has order 6. 

Since n2 = 7 or 2 1 ,  we have n2 ¢ 1 mod 8. so by Exercise 21 there is a pair of distinct 
Sylow 2-subgroups that have nontrivial intersection; over all such pairs let T1 and T2 
be chosen with U = Tt n T2 of maximal order. We next prove 

(5) U is a Klein 4-group and Nc (U) � S4. 

Let N = Nc (U).  Since l U I  = 2 or 4 and N permutes the nonidentity elements of 
U by conjugation, a subgroup of order 7 in N would commute with some element of 
order 2 in U, contradicting (2). It follows that the order of N is not divisible by 7. By 
Exercise 13 ,  N has more than one Sylow 2-subgroup, hence I N I  = 2a · 3, where a =  2 
or 3. Let P E Syl3 (N). Since P is a Sylow 3-subgroup of G, by (4) the group NN (P) 
has order 3 or 6 (with P as its unique subgroup of order 3) .  Thus by Sylow's Theorem 
N must have four Sylow 3-subgroups, and these are permuted transitively by N under 
conjugation. Since any group of order 12 must have either a normal Sylow 2-subgroup 
or a normal Sylow 3-subgroup (cf. Section 4.5), I N I  = 24. Let K be the kernel of N 
acting by conjugation on its four Sylow 3-subgroups, so K is the intersection of the 
normalizers of the Sylow 3-subgroups of N. If K = 1 then N � S4 as asserted; so 
consider when K =I 1 .  Since K ::'S NN (P), the group K has order dividing 6, and 
since P does not normalize another Sylow 3-subgroup, P is not contained in K. It 
follows that I K I = 2. But now N f K is a group of order 12 which is seen to have more 
than one Sylow 2-subgroup and four Sylow 3-subgroups, contrary to the property of 
groups of order 12  cited earlier. This proves N � S4 . Since S4 has a unique nontrivial 
normal 2-subgroup, V4, (5) holds. Since N � S4 , it follows that N contains a Sylow 
2-subgroup of G and also that NN (P) � S3 (so also Nc (P) � S3 by (4)). Hence we 
obtain 

(6) Sylow 2-subgroups ofG are isomorphic to D8, and 

(7) the normalizer in G of a Sylow 3-subgroup is isomorphic to S3 and so G has no 
elements of order 6. 
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By (2) and (7), no element of order 2 commutes with an element of odd prime order. 
If T E Syl2 (G), then T � D8 by (6), so Z(T) = ( z )  where z is an element of order 
2. Then T � CG (z) and I Cc (z) l has no odd prime factors by what was just said, 
so CG (Z) = T. Since any element normalizing T would normalize its center, hence 
commute with z, it follows that Sylow 2-subgroups of G are self-normalizing. This 
gives 

(8) n2 = 21 and CG (z) = T, where T E Syl2 (G) and Z(T) = ( z ) . 
Since I CG (z) l = 8, the element z in (8) has 21 conjugates. By (6), G has one conjugacy 
class of elements of order 4, which by ( 6) and (8) contains 42 elements. By (2) there are 
48 elements of order 7, and by (4) there are 56 elements of order 3 .  These account for 
all l 67 nonidentity elements of G, and so every element of order 2 must be conjugate 
to z, i.e. , 

(9) G has a unique conjugacy class of elements of order 2. 
Continuing with the same notation, let T E Syh (G) with U � T and let W be the other 
Klein 4-group in T .  It follows from Sylow's Theorem that U and W are not conjugate 
in G since they are not conjugate in Nc (T) = T (cf. Exercise 50 in Section 4.5). We 
argue next that 

( lO) NG (W) � s4. 

To see this let W = ( z, w )  where, as before, ( z )  = Z(T). Since w is conjugate in 
G to z, CG (w) = To is another Sylow 2-subgroup of G containing W but different 
from T .  Thus W = T n To. Since U was an arbitrary maximal intersection of Sylow 
2-subgroups of G, the argument giving (5) implies ( 10). 

We now record results which we have proved or which are easy consequences of 
( 1 )  to ( 10). 

Proposition 14. If G is a simple group of order 168, then the following hold: 
(1) n2 = 21 ,  n3 = 7 and n1 = 8 
(2) Sylow 2-subgroups of G are dihedral, Sylow 3- and ?-subgroups are cyclic 
(3) G is isomorphic to a subgroup of A 7 and G has no subgroup of index � 6 
(4) the conjugacy classes of G are the following: the identity; two classes of el

ements of order 7 each of which contains 24 elements (represented by any 
element of order 7 and its inverse); one class of elements of order 3 containing 
56 elements; one class of elements of order 4 containing 42 elements; one class 
of elements of order 2 containing 21 elements 
(in particular, every element of G has order a power of a prime) 

(5) if T E Syh (G) and U, W are the two Klein 4-groups in T, then U and W are 
not conjugate in G and Nc (U) � Nc (W) � S4 

(6) G has precisely three conjugacy classes of maximal subgroups, two of which 
are isomorphic to S4 and one of which is isomorphic to the non-abelian group 
of order 2 1 .  

All of the calculations above were predicated on the assumption that there exists a 
simple group of order 168. The fact that none of these arguments leads to a contradiction 
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does not prove the existence of such a group, but rather just gives strong evidence that 
there may be a simple group of this order. We next illustrate how the internal subgroup 
structure of G gives rise to a geometry on which G acts, and so leads to a proof that a 
simple group of order 1 68 is unique, if it exists (which we shall also show). 

Continuing the above notation let U1 , • • •  , U1 be the conjugates of U and let 
Wt • . . .  , W1 be the conjugates of W. Call the U; points and the Wj lines. Define 
an "incidence relation" by specifying that 

the point U; is on the line Wj if and only if U; normalizes Wj. 

Note that U; normalizes Wj if and only if U; Wj � D8, which in tum occurs if and 
only if W; normalizes U; . In each point or line stabilizer-which is isomorphic to S4-
there is a unique normal 4-group, V, and precisely three other (nonnormal) 4-groups 
A t .  A2. A3. The groups VA; are the three Sylow 2-subgroups of the S4• We therefore 
have: 

( 1 1 )  each line contains exactly 3 points and each point lies on exactly 3 lines. 
Since any two nonnormal 4-groups in an S4 generate the S4, hence uniquely determine 
the other two Klein groups in that s4. we obtain 

( 12) any 2 points on a line uniquely determine the line (and the third point on it). 
Since there are 7 points and 7 lines, elementary counting now shows that 

( 13) each pair of points lies on a unique line, and each pair of lines intersects in a 
unique point. 
(This configuration of points and lines thus satisfies axioms for what is termed a projec
tive plane.) It is now straightforward to show that the incidence geometry is uniquely 
determined and may be represented by the graph in Figure 1 ,  where points are ver
tices and lines are the six sides and medians of the triangle together with the inscribed 
circle-see Exercise 27. This incidence geometry is called the projective plane of order 
2 or the Fano Plane, and will be denoted by :F. (Generally, a projective plane of"order" 
N has N2 + N + 1 points, and the same number of lines.) Note that at this point the 
projective plane :F does exist-we have explicitly exhibited points and lines satisfying 
(1 1 )  to ( 13)--even though the group G is not yet known to exist. 

Figure 1 
An automorphism of this plane is any permutation of points and lines that preserves 

the incidence relation. For example, any of the six symmetries of the triangle in Figure I 
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give automorphisms of :F, but we shall see that :F has many more automorphisms than 
these. 

Each g E G acts by conjugation on the set of points and lines, and this action 
preserves the incidence relation. Only the identity element in G fixes all points and so 
via this action the group G would be isomorphic to a subgroup of the group of Aut( F), 
the group of all automorphisms of :F. 

Any automorphism of :F that fixes two points on a line as well as a third point not 
on that line is easily seen to fix all points. Thus any automorphism of :F is uniquely 
determined by its action on any three noncollinear points. Since one easily computes 
that there are 168 such triples, :F has at most 168 automorphisms. This proves 

if the simple group G exists it is unique and G � Aut(:F). 

Two steps in the classification process yet remain: to prove that :F does have 168 
automorphisms and to prove Aut(:F) is indeed a simple group. Although one can do 
these graph-theoretically, we adopt an approach following ideas from the theory of 
"algebraic groups." Let V be a 3-dimensional vector space over the field of 2 elements, 
IF 2· so v is the elementary abelian 2-group z2 X z2 X z2 of order 8. By Proposition 17 
in Section 4.4, Aut(V) = GL(V) � GL3 (lF2) has order 168. Call the seven !
dimensional subs paces (i.e., the nontrivial cyclic subgroups) of V points, call the seven 
2-dimensional subspaces (i.e., the subgroups of order 4) lines, and say the point p is 
incident to the line L if p C L. Then the points and lines are easily seen to satisfy the 
same axioms ( 1 1 )  to ( 13) above, hence to represent the Fano Plane. Since G L( V) acts 
faithfully on these points and lines preserving incidence, Aut(:F) has order at least 168. 
In light of the established upper bound for IAut(:F) I this proves 

Aut(:F) � GL(V) � GL3 (lF2) and Aut(:F) has order 168. 

Finally we prove that G L(V) is a simple group. By way of contradiction assume 
H is a proper nontrivial normal subgroup of G L(V). Let Q be the 7 points and let N be 
the stabilizer in G L(V) of some point in Q. Since G L(V) acts transitively on Q, N has 
index 7. Since the intersection of all conjugates of N fixes all points, this intersection is 
the identity. Thus H 1:. N, and so GL(V) = HN. Since IH : H n Nl  = IHN : N l  
we have 7 I IH I .  Since GL(V) is isomorphic to a subgroup of S1 and since Sylow 
7-subgroups of S7 have normalizers of order 42, G L (V) does not have a normal Sylow 
7-subgroup, so by Sylow's Theorem n7(G L(V)) = 8. A normal Sylow 7-subgroup of 
H would be characteristic in H, hence normal in G L(V), so also H does not have a 
unique Sylow 7-subgroup. Since n7 (H) = 1 mod 7 and n7 (H) :::;: n7 (GL(V)) = 8 we 
must have n7(H) = 8. This implies I H I  is divisible by 8, so 56 I IH I , and since H 
is proper we must have I H I = 56. By usual counting arguments ( cf. Exercise 7 (b) of 
Section 5.5) H has a normal, hence characteristic, Sylow 2-subgroup, which is therefore 
normal in GL(V). But then GL(V) would have a unique Sylow 2-subgroup. Since 
the set of upper triangular matrices and the set of lower triangular matrices are two 
subgroups of G L3 (IF 2) each of order 8, we have a contradiction. In summary we have 
now proven the following theorem. 
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Theorem 15. Up to isomorphism there is a unique simple group of order 168, G L3 (IB' 2) ,  
which is also the automorphism group of the projective plane F. 

Note that we might just as well have called the Wj points and the U; lines. This 
"duality" between points and lines together with the uniqueness of a simple group of 
order 168 may be used to prove the existence of an outer automorphism of G that 
interchanges points and lines i.e., conjugates U to W. 

Many families of finite simple groups can be classified by analogous methods. 
In more general settings geometric structures known as buildings play the role of the 
projective plane (which is a special case of a building of type A2). In this context the 
subgroups NG(U) and NG(W) are parabolic subgroups ofG, and U, W are their unipo
tent radicals respectively. In particular, all the simple linear groups (cf. Section 3 .4) 
are characterized by the structure and intersections of their parabolic subgroups, or 
equivalently, by their action on an associated building. 

Remarks on the Existence Problem for Groups 

As in other areas of mathematics (such as the theory of differential equations) one 
may hypothesize the existence of a mathematical system (e.g. ,  solution to an equation) 
and derive a great deal of information about this proposed system. In general, if after 
considerable effort no contradiction is reached based on the initial hypothesis one begins 
to suspect that there actually is a system which does satisfy the conditions hypothesized. 
However, no amount of consistent data will prove existence. Suppose we carried out 
an analysis of a hypothetical simple group G of order 33 · 7 · 1 3  · 409 analogous to our 
analysis of a simple group of order 168 (which we showed to exist). After a certain 
amount of effort we could show that there are unique possible Sylow numbers: 

n3 = 7 · 409 n 13 = 32 · 7 · 409 n4o9 = 32 • 7 · 1 3. 

We could further show that such a G would have no elements of order pq , p and 
q distinct primes, no elements of order 9, and that distinct Sylow subgroups would 
intersect in the identity. We could then count the elements in Sylow p-subgroups for 
all primes p and we would find that these would total to exactly IG I . At this point 
we would have the complete subgroup structure and class equation for G. We might 
then guess that there is a simple group of this order, but the Feit-Thompson Theorem 
asserts that there are no simple groups of odd composite order. (Note, however, that 
the configuration for a possible simple group of order 33 · 7 · 1 3  · 409 is among the 
cases that must be dealt with in the proof of the Feit-Thompson Theorem, so quoting 
this result in this instance is actually circular. We prove no simple group of this order 
exists in Section 1 9.3; see also Exercise 29.) The point is that even though we have as 
much data in this case as we had in the order 168 situation (i.e., Proposition 14), we 
cannot prove existence without some new techniques. 

When we are dealing with nonsimple groups we have at least one method of building 
larger groups from smaller ones: semidirect products. Even though this method is fairly 
restrictive it conveys the notion that nonsimple groups may be built up from smaller 
groups in some constructive fashion. This process breaks down completely for simple 
groups; and so this demarcation of techniques reinforces our appreciation for the Holder 
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Program: determining the simple groups, and finding how these groups are put together 
to form larger groups. 

The study of simple groups, as illustrated in the preceding discussion of groups of 
order 168, uses many of the same tools as the study of nonsimple groups (to unravel their 
subgroup structures, etc.) but also requires other techniques for their construction. As 
we mentioned at the end of that discussion, these often involve algebraic or geometric 
methods which construct simple groups as automorphisms of mathematical structures 
that have intrinsic interest, and thereby link group theory to other areas of mathematics 
and science in fascinating ways. Thus while we have come a long way in the analysis 
of finite groups, there are a number of different areas in this branch of mathematics on 
which we have just touched. 

The analysis of infinite groups generally involves quite different methods, and in 
the next section we introduce some of these. 

E X E R C I S E S 

Counting elements: 

1. Prove that for fixed P E Sylp (G) if P n R = 1 for all R E Sylp (G) - {P} ,  then Pt n Pz = I 
whenever Pt and Pz are distinct Sylow p-subgroups of G. Deduce in this case that the 
number of nonidentity elements of p-power order in G is (I P I - 1 ) I G  : Nc (P) i . 

2. In the group s3 X s3 exhibit a pair of Sylow 2-subgroups that intersect in the identity and 
exhibit another pair that intersect in a group of order 2. 

3. Prove that if IG I  = 380 then G is not simple. [Just count elements of odd prime order.] 

4. Prove that there are no simple groups of order 80, 35 1 ,  3875 or 53 13 .  

5 .  Let G be a solvable group of order pm, where p i s  a prime not dividing m, and let 
P E Sylp (G) . If Nc (P) = P, prove that G has a normal subgroup of order m.  Where 
was the solvability of G needed in the proof? (This result is true for nonsolvable groups 
as well - it is a special case of Burnside's N!C-Theorem.) 

Exploiting subgroups of small index: 

6. Prove that there are no simple groups of order 2205, 4125, 5 1 03, 6545 or 6435.  

Permutation representations: 

7. Prove that there are no simple groups of order 1755 or 5265. [Use Sylow 3-subgroups to 
show G :::: S13 and look at the normalizer of a Sylow 13-subgroup.] 

8. Prove that there are no simple groups of order 792 or 918 .  

9.  Prove that there are no simple groups of order 336. 

Playing p-subgroups off against each other: 

10. Prove that there are no simple groups of order 4095, 4389, 53 1 3  or 6669. 

11. Prove that there are no simple groups of order 4851 or 5 145. 

12. Prove that there are no simple groups of order 9555. [Let Q E Sy/13 (G) and let P E 
Syl7 (Nc (Q)) .  Argue that Q ::::J Nc (P) - why is this a contradiction?] 

Normalizers of Sylow intersections: 

13. Let G be a group with more than one Sylow p-subgroup. Over all pairs of distinct Sylow 
p-subgroups let P and Q be chosen so that I P  n Q l  is maximal. Show that Nc (P n Q) 
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has more than one Sylow p-subgroup and that any two distinct Sylow p-subgroups of 
Nc(P n Q) intersect in the subgroup P n  Q. (Thus INc(P n Q) l  is divisible by p · IP n  Q l  
and by some prime other than p .  Note that Sylow p-subgroups of Nc (P n Q)  need not 
be Sylow in G.) 

14. Prove that there are no simple groups of order 144, 525, 2025 or 3 159. 

General exercises: 

15. Classify groups of order 1 05. 

16. Prove that there are no non-abelian simple groups of odd order < 10000. 

17. (a) Prove that there is no simple group of order 420. 
(b) Prove that there are no simple groups of even order < 500 except for orders 2, 60, 

1 68 and 360. 

18. Prove that if G is a group of order 36 then G has either a normal Sylow 2-subgroup or a 
normal Sylow 3-subgroup. 

19. Show that a group of order 12 with no subgroup of order 6 is isomorphic to A4. 

20. Show that a group of order 24 with no element of order 6 is isomorphic to S4. 

21. Generalize Lemma 13 by proving that if np ¢. l (mod pk) then there are distinct Sylow 

p-subgroups P and R of G such that P n R is of index � pk-l in both P and R.  

22. Suppose over all pairs of distinct Sylow p-subgroups of  G ,  P and R are chosen with 
I P  n R l  maximal. Prove that Nc (P n R) is not a p-group. 

23. Let A and B be normal subsets of a Sylow p-subgroup P of G. Prove that if A and B are 
conjugate in G then they are conjugate in Nc(P). 

24. Let G be a group of order pqr where p, q and r are primes with p < q < r.  Prove that a 
Sylow r-subgroup of G is normal. 

25. Let G be a simple group of order p2qr where p, q and r are primes. Prove that I G I  = 60. 

26. Prove or construct a counterexample to the assertion: if G is a group of order 168 with 
more than one Sylow ?-subgroup then G is simple. 

27. Show that if :F is any set of points and lines satisfying properties (1 1)  to ( 13) in the 
subsection on simple groups of order 1 68 then the graph of incidences for :F is uniquely 
determined and is the same as Figure 1 (up to relabeling points and lines). [Take a line 
and any point not on this line. Depict the line as the base of an equilateral triangle and 
the point as the vertex of this triangle not on the base. Use the axioms to show that the 
incidences of the remaining points and lines are then uniquely determined as in Figure 1 .] 

28. Let G be a simple group of order 33 
· 7 · 13  · 409. Compute all permissible values of np 

for each p E {3, 7, 1 3 , 409} and reduce to the case where there is a unique possible value 
for each np . 

29. Given the information on the Sylow numbers for a hypothetical simple group of order 
33 

· 7 - 1 3  · 409, prove that there is no such group. [Work with the permutation representation 
of degree 819.] 

30. Suppose G is a simple group of order 720. Find as many properties of G as you can (Sylow 
numbers, isomorphism type of Sylow subgroups, conjugacy classes, etc.). Is there such a 
group? 
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6.3 A WORD ON FREE GROUPS 

In this section we introduce the basic theory of so-called free groups. This will enable 
us to make precise the notions of generators and relations which were used in earlier 
chapters. The results of this section rely only on the basic theory of homomorphisms. 

The basic idea of a free group F(S) generated by a set S is that there are no relations 
satisfied by any of the elements in S (S is "free" of relations). For example, if S is the 
set {a , b} then the elements of the free group on the two generators a and b are of the 
form a, aa, ab, abab, bah, etc., called words in a and b, together with the inverses of 
these elements, and all these elements are considered distinct. If we group like terms 
together, then we obtain elements of the familiar form a, b-3 , aba-1b2 etc. Such 
elements are multiplied by concatenating their words (for example, the product of aha 
and b-1a3b would simply be abab-1a3b). It is natural at the outset (even before we 
know S is contained in some group) to simply define F (S) to be the set of all words in S, 
where two such expressions are multiplied in F(S) by concatenating them. Although 
in essence this is what we do, it is necessary to be more formal in order to prove that 
this concatenation operation is well defined and associative. Mter all, even the familiar 
notation an for the product a · a  · · · a (n terms) is permissible only because we know that 
this product is independent of the way it is bracketed ( cf. the generalized associative law 
in Section 1 . 1 ). The formal construction of F(S) is carried out below for an arbitrary 
set S. 

One important property reflecting the fact that there are no relations that must be 
satisfied by the generators in S is that any map from the set S to a group G can be 
uniquely extended to a homomorphism from the group F(S) to G (basically since we 
have specified where the generators must go and the images of all the other elements 
are uniquely determined by the homomorphism property - the fact that there are 
no relations to worry about means that we can specify the images of the generators 
arbitrarily). This is frequently referred to as the universal property of the free group 
and in fact characterizes the group F ( S) . 

The notion of "freeness" occurs in many algebraic systems and it may already be 
familiar (using a different terminology) from elementary vector space theory. When 
the algebraic systems are vector spaces, F (S) is simply the vector space which has S 
as a basis. Every vector in this space is a unique linear combination of the elements of 
S (the analogue of a "word"). Any set map from the basis S to another vector space 
V extends uniquely to a linear transformation (i.e., vector space homomorphism) from 
F(S) to V.  

Before beginning th e  construction of F (S) w e  mention that one often sees the 
universal property described in the language of commutative diagrams. In this form it 
reads (for groups) as follows: given any set map lfJ from the set S to a group G there is a 
unique homomorphism <P : F ( S) -+ G such that <P I s = lfJ i.e., such that the following 
diagram commutes: 
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F(S) �!� 
G 
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As mentioned above, the only difficulty with the construction of F(S) is the ver
ification that the concatenation operation on the words in F ( S) is well defined and 
associative. To prove the associative property for multiplication of words we return to 
the most basic level where all the exponents in the words of S are ± 1 .  

We first introduce inverses for elements of S and an identity. 
Let s-1 be any set disjoint from S such that there is a bijection from S to s-1 • 

For each s E S denote its corresponding element in s-1 by s-1 and similarly for each 
t E s-1 let the corresponding element of S be denoted by r1 (so (s- • )-1 = s). Take 
a singleton set not contained in S U s- • and call it { 1 } .  Let 1-1 = 1 and for any 
X E S U s-l U { 1 }  let X I = X .  

Next we describe the elements of the free group on the set S.  A word on S i s  by 
definition a sequence 

(s1 , s2 , s3 , . . . ) where s; E S U s-1 U { 1 }  and s; = 1 for all i sufficiently large 

(that is, for each sequence there is an N such that s; = 1 for all i � N). Thus we can 
think of a word as a finite product of elements of S and their inverses (where repetitions 
are allowed). Next, in order to assure uniqueness of expressions we consider only words 
which have no obvious "cancellations" between adjacent terms (such as baa- • b = bb ) . 
The word (s1 , s2 , s3 , • • •  ) is said to be reduced if 

(1) Si+I =f:. sj1 for all i with s; =f:. 1 ,  and 
(2) if Sk = 1 for some k, then s; = 1 for all i � k. 
The reduced word (1 ,  1 ,  1 ,  . . .  ) is called the empty word and is denoted by 1 .  We 
now simplify the notation by writing the reduced word (s�1 , s�2 , • • •  , s�" , 1 ,  l ,  1 ,  . . . ) , 
s; E S, €; = ± 1 ,  as s�1 s�2 • • •  s�" . Note that by definition, reduced words rf1 r�2 • • •  r� 
and s� 1 s�2 • • •  s�" are equal if and only if n = m and �; = €; , 1 :::_s i :::_s n .  Let F (S) be 
the set of reduced words on S and embed S into F (S) by 

s �---* (s, 1 , 1 ,  1 , . . .  ) . 
Under this set injection we identify S with its image and henceforth consider S as a 
subset of F(S) .  Note that if S = 0, F(S) = { 1 } . 

We are now in a position to introduce the binary operation on F(S). The principal 
technical difficulty is to ensure that the product of two reduced words is again a reduced 
word. Although the definition appears to be complicated it is simply the formal rule 
for "successive cancellation" of juxtaposed terms which are inverses of each other 
(e.g., ab- 1a times a-1ba should reduce to aa). Let rf1 r�2 • • •  r!"' and s�1 s�2 • • •  s�" be 
reduced words and assume first that m :::_s n .  Let k be the smallest integer in the range 
1 :::_s k :::S m + 1 such that s? =f:. r :�1c-=;11 •  Then the product of these reduced words is 
defined to be: 

if k :::_s m 

if k = m+ 1 :::_s n 

if k = m+1 and m = n .  

The product i s  defined similarly when m � n,  so in either case it results in a reduced 
word. 
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Theorem 16. F(S) is a group under the binary operation defined above. 

Proof" One easily checks that 1 is an identity and that the inverse of the reduced 
d Et Ez E • h d d d -E -En-l -Et Th d"ffi 1 f h f war s1 s2 . • •  sn" ts t e re uce war sn "sn-l • . .  s1 . e 1 cu t part o t e proo 

is the verification of the associative law. This can be done by induction on the "length" 
of the words involved and considering various cases or one can proceed as follows: For 
each s E S U s-t U { 1 }  define as : F(S) � F(S) by 

"f E t _J_ -1 
1 s1 1 s 
"f Et - 1 
1 s1 = s . 

Since a..- 1 o as is the identity map of F(S) � F(S), as is a permutation of F(S). Let 
A (F) be the subgroup of the symmetric group on the set F(S) which is generated by 
{as I s E S}. It is easy to see that the map 

SEt SEz SE" I-+ aEt 0 (1Ez 0 0 (1E" 1 2 • • • n St sz • • • Sn 

is a (set) bijection between F ( S) and A ( S) which respects their binary operations. Since 
A(S) is a group, hence associative, so is F(S) . 

The universal property of free groups now follows easily. 

Theorem 17. Let G be a group, S a set and q; : S � G a set map. Then there is a unique 
group homomorphism cJ> : F(S) � G such that the following diagram commutes: 

S 
inclusion 

F(S) �1� 
Proof" Such a map cJ> must satisfy cJ>(s� 1 s�2 • • •  s�" ) = q;(s1 )E1 q; (s2Y2 • • •  q;(snY" 

if it is to be a homomorphism (which proves uniqueness), and it is straightforward to 
check that this map is in fact a homomorphism (which proves existence). 

Corollary 18. F(S) is unique up to a unique isomorphism which is the identity map 
on the set S. 

Proof" This follows from the universal property. Suppose F(S) and F'(S) are 
two free groups generated by S. Since S is contained in both F ( S) and F' (S),  we have 
natural injections S "-+ F' (S) and S "-+ F(S) . By the universal property in the theorem, 
it follows that we have unique associated group homomorphisms cJ> : F(S) � F' (S) 
and cJ>' : F'(S) � F (S) which are both the identity on S. The composite cJ>'cJ> is a 
homomorphism from F(S) to F(S) which is the identity on S, so by the uniqueness 
statement in the theorem, it must be the identity map. Similarly cJ> cJ>' is the identity, so 
cJ> is an isomorphism (with inverse cJ>'), which proves the corollary. 

Sec. 6.3 A Word on Free Groups 21 7 



Definition. The group F(S) is called the free group on the set S. A group F is afree 
group if there is some set S such that F = F (S) - in this case we call S a set of free 
generators (or a free basis) of F. The cardinality of S is called the rank of the free 
group. 

One can now simplify expressions in a free group by using exponential notation, so 
we write a3b-2 instead of the formal reduced word aaab-lb-1 • Expressions like aha, 
however, cannot be simplified in the free group on {a , b} . We mention one important 
theorem in this area. 

Theorem 19. (Schreier) Subgroups of a free group are free. 

This is not trivial to prove and we do not include a proof. There is a nice proof of 
this result using covering spaces (cf. Trees by J.-P. Serre, Springer-Verlag, 1980). 

Presentations 

Let G be any group. Then G is a homomorphic image of a free group: take S = G 
and rp as the identity map from G to G ;  then Theorem 16 produces a (surjective) 
homomorphism from F (G) onto G .  More generally, if S is any subset of G such 
that G = { S ) ,  then again there is a unique surjective homomorphism from F(S) onto 
G which is the identity on S. (Note that we can now independently formulate the 
notion that a subset generates a group by noting that G = ( S )  if and only if the map 
n : F(S) -+ G which extends the identity map of S to G is surjective.) 

Definition. Let S be a subset of a group G such that G = { S ) . 
(l) A presentation for G is apair (S, R), where R is a set of words in F(S) such that 

the normal closure of { R )  in F(S) (the smallest normal subgroup containing 
( R ) ) equals the kernel of the homomorphism 1r : F (S) -+ G (where 1r extends 
the identity map from S to S). The elements of S are called generators and those 
of R are called relations of G. 

(2) We say G is finitely generated if  there is a presentation (S, R) such that S is a 
finite set and we say G is finitely presented if there is a presentation (S, R) with 
both S and R finite sets. 

Note that if (S, R) is a presentation, the kernel of the map F(S) -+ G is not { R )  
itself but rather the (much larger) group generated by R and all conjugates of elements 
in R. Note that even for a fixed set S a group will have many different presentations (we 
can always throw redundant relations into R, for example). If G is finitely presented 
with S = {st .  s2 , • • •  , sn } and R = {wt . w2 , • • •  , wd, we write (as we have in preceding 
chapters): 

G = { St . S2 , • . • , Sn I Wt = W2 = • · · = Wk = 1 ) 

and if w is the word w1 w21 , we shall write w1 = w2 instead of w = 1 .  
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Examples 

(1) Every finite group is finitely presented. To see this let G = {gt ,  . . .  , gn }  be a finite 
group. Let S = G and let rr : F (S) --+ G be the homomorphism extending the identity 

map of S. Let Ro be the set of words gi gi gk1 , where i, j = 1 ,  . . . , n and gi gi = gk in 

G. Clearly Ro :::; ker rr. If N is the normal closure of Ro in F ( S) and G = F (S) f N, 
then G is a homomorphic image of G (i.e., rr factors through N). Moreover, the set of 
elements {gi I i = 1 ,  . . .  , n }  is closed under multiplication. Since this set generates 
G, it must equal G. Thus IG I = I G I and so N =  ker rr and (S, Ro) is a presentation 
of G. 
This illustrates a sufficient condition for (S, R) to be a presentation for a given finite 
group G :  
(i) S must b e  a generating set for G,  and 

(ii) any group generated by S satisfying the relations in R must have order :::; I G I .  
(2) Abelian groups can be presented easily. For instance 

Z � F({a}) = ( a ) , 

Z x  Z �  ( a , b I [a, b] = 1 ) , 

Zn X Zm � ( a, b I an = bm = [a , b] = 1 ) . 

(Recall [a, b] = a- 1 b-1ab). 
(3) Some fatniliar non-abelian groups introduced in earlier chapters have simple presen

tations: 

D2n = ( r, s  I rn = s2 = 1 ,  s-1 rs = r-1 ) 

Qs = ( i, j I i
4 

= 1 , / = i2
, T 1 ij = ;-1 ) . 

To check, for example, the presentation for Dzn note that the relations in the presenta
tion ( r, s 1 r" = s2 = 1 ,  s-1 rs = r- 1 ) imply that this group has a normal subgroup 
(generated by r) of order :::; n whose quotient is generated by s (which has order :::; 2). 
Thus any group with these generators and relations has order at most 2n. Since we 
already know of the existence of the group D2n of order 2n satisfying these conditions, 
the abstract presentation must equal D2n . 

(4) As mentioned in Section 1 .2, in general it is extremely difficult even to determine if a 
given set of generators and relations is or is not the identity group (let alone determine 
whether it is some other nontrivial finite group). For example, in the following two 
presentations the first group is an infinite group and the second is the identity group 
(cf. Trees, Chapter 1 ) :  

( I -1 2 -1 2 -1 2 -1 2 ) X1 , X2 , XJ , X4 X2X1 X2 = Xi , XJX2XJ = x2 , X4X3X4 = x3 , XiX4Xt = x4 
( I -] 2 -1 2 - 1  2 ) X} , X2 , X3 , X2XtX2 = Xi , XJX2XJ = x2 , XtX3Xj = X3 • 

(5) It is easy to see that Sn is generated by the transpositions ( 1 2) , (2 3) , . . .  , (n - 1  n), 
and that these satisfy the relations 

((i i + 1)(i + 1  i +2))3 = 1 and [(i i + 1) ,  (j j + 1)]  = 1 ,  whenever l i - j l  :=:: 2 

(here l i - j l  denotes the absolute value ofthe integer i - j).  One can prove by induction 
on n that these form a presentation of Sn : 

Sn � ( ti • . . .  , tn-i  I tf = 1 ,  (ti ti+I )3 
= 1 ,  and [tj , ti ] = l 

whenever l i - j l  :=:: 2, 1 :::; i, j :::; n - 1 ) .  
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As mentioned in Section 1 .6 we can use presentations of a group to find homomor
phisms between groups or to find automorphisms of a group. We did this in classifying 
groups of order 6, for example, when we proved that any non-abelian group of order 6 
was generated by an element of order 3 and an element of order 2 inverting it; thus there is 
a homomorphism from S3 onto any non-abelian group of order 6 (hence an isomorphism, 
by computing orders). More generally, suppose G is presented by, say, generators a ,  b 
with relations r1 , . . .  , rk . If a' , b' are any elements of a group H satisfying these rela
tions, there is a homomorphism from G into H. Namely, if rr : F({a, b}) --+- G is the 
presentation homomorphism, we can define rr' : F({a , b}) --+- H by rr' (a) = a' and 
rr' (b) = b' . Then ker rr ::=:: ker rr' so rr' factors through ker rr and we obtain 

G ;:: F({a, b})/ ker rr --+ H. 

In, particular, if ( a' , b' } = H = G, this homomorphism is an automorphism of G. 
Conversely, any automorphism must send a set of generators to another set of generators 
satisfying the same relations. For example, D8 = ( a , b I a2 = b4 = 1 ,  aha = b-1 } 
and any pair a' , b' of elements, where a' is a noncentral element of order 2 and b' is of 
order 4, satisfies the same relations. Since there are four noncentral elements of order 
2 and two elements of order 4, D8 has 8 automorphisms. 

Similarly, any pair of elements of order 4 in Q8 which are not equal or inverses of 
each other necessarily generate Q8 and satisfy the relations given in Example 3 above. 
It is easy to check that there are 24 such pairs, so 

IAut(Qs) l  = 24. 

Free objects can be constructed in (many, but not all) other categories. For instance, 
a monoid is a set together with a binary operation satisfying all of the group axioms 
except the axiom specifying the existence of inverses. Free objects in the category of 
monoids play a fundamental role in theoretical computer science where they model the 
behavior of machines (Turing machines, etc.). We shall encounter free algebras (i .e., 
polynomial algebras) and free modules in later chapters. 

E X E R C I S E S  

l. Let F1 and Fz be free groups of finite rank. Prove that F1 � Fz if and only if they have the 
same rank. What facts do you need in order to extend your proof to infinite ranks (where 
the result is also true)? 

2. Prove that if lS I  > I then F(S) is non-abelian. 
3. Prove that the commutator subgroup of the free group on 2 generators is not finitely gener-

ated (in particular, subgroups of finitely generated groups need not be finitely generated). 
4. Prove that every nonidentity element of a free group is of infinite order. 
5. Establish a finite presentation for A4 using 2 generators. 
6. Establish a finite presentation for S4 using 2 generators. 
7. Prove that the following is a presentation for the quatemion group of order 8: 

Qs = ( a , b I a2 
= b2 , a-1 ba = b-1  } .  

8. Use presentations to find the orders of the automorphism groups of the groups Zz x Z4 
and z4 X Z4 . 
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9. Prove that Aut( Qs) � S4 . 

10. This exercise exhibits an automorphism of S6 that is not inner (hence, together with Ex
ercise 19 in Section 4.4 it shows that 1Aut(S6) : lnn(S6) 1  = 2). Let ti = (1 2) (3 4) (5 6}, 
tz = (1 4)(2 5) (3 6), t� = (1 3)(2 4)(5 6}, t� = (1 2) (3 6)(4 5), and t� = (1 4}(2 3)(5 6). 
Show that ti , . . .  , t� satisfy the following relations: 

(tf)2 = 1 for all i , 
(t!tj)2 = 1 for all i and j with l i - j l  ::=: 2, and 

(t!ti+1 )3 = 1 for all i E { 1 , 2, 3 , 4} .  

Deduce that S6 = ( t }  , . . .  , t� ) and that the map 

o 2) f-+ tL <2 3) f-+ 12 . (3 4) f-+ t� . <4 5) f-+ t� .  <5 6) f-+ t� 
extends to an automorphism of S6 (which is clearly not inner since it does not send trans
positions to transpositions). [Use the presentation for S6 described in Example 5.] 

11. Let S be a set. The group with presentation (S, R), where R = { [s , t] I s , t E S} is called 
the free abelian group on S - denote it by A(S). Prove that A (S) has the following 
universal property: if G is any abelian group and qJ : S --+ G is any set map, then there is 
a unique group homomorphism tP : A (S) --+ G such that tP I s  = qJ. Deduce that if A is a 
free abelian group on a set of cardinality n then 

A � Z x Z x · · · x Z (n factors). 

12. Let S be a set and let c be a positive integer. Formulate the notion of a free nilpotent group 
on S of nilpotence class c and prove it has the appropriate universal property with respect 
to nilpotent groups of class � c. 

13. Prove that there cannot be a nilpotent group N generated by two elements with the property 
that every nilpotent group which is generated by two elements is a homomorphic image 
of N (i .e. ,  the specification of the class c in the preceding problem was necessary). 
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Pa rt I I  

RI N G  TH EO RY 

The theory of groups is concerned with general properties of certain objects having 
an algebraic structure defined by a single binary operation. The study of rings is 
concerned with objects possessing two binary operations (called addition and multipli
cation) related by the distributive laws. We first study analogues for the basic points 
of development in the structure theory of groups. In particular, we introduce subrings, 
quotient rings, ideals (which are the analogues of normal subgroups) and ring homo
morphisms. We then focus on questions about general rings which arise naturally from 
the presence of two binary operations. Questions concerning multiplicative inverses 
lead to the notion of fields and eventually to the construction of some specific fields 
such as finite fields. The study of the arithmetic (divisibility, greatest common divisors, 
etc.) of rings such as the familiar ring of integers, Z, leads to the notion of primes and 
unique factorizations in Chapter 8. The results of Chapters 7 and 8 are then applied to 
rings of polynomials in Chapter 9. 

The basic theory of rings developed in Part II is the cornerstone for the remaining 
four parts of the book. The theory of ring actions (modules) comprises Part III of the 
book. There we shall see how the structure of rings is reflected in the structure of the 
objects on which they act and this will enable us to prove some powerful classification 
theorems. The structure theory of rings, in particular of polynomial rings, forms the 
basis in Part IV for the theory of fields and polynomial equations over fields. There the 
rich interplay among ring theory, field theory and group theory leads to many beautiful 
results on the structure of fields and the theory of roots of polynomials. Part V continues 
the study of rings and applications of ring theory to such topics as geometry and the 
theory of extensions. In Part VI the study of certain specific kinds of rings (group rings) 
and the objects (modules) on which they act again gives deep classification theorems 
whose consequences are then exploited to provide new results and insights into finite 
groups. 
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CHAPTER 7 

I ntroduct io n to Rings 

7. 1 BASIC DEFIN ITIONS AND EXAM PLES 

Definition. 
(1) A ring R is a set together with two binary operations + and x (called addition 

and multiplication) satisfying the following axioms: 
(i) (R,  +) is an abelian group, 

(ii) x is associative : (a x b) x c = a  x (b x c) for all a, b, c E R, 
(iii) the distributive laws hold in R : for all a ,  b, c E R 

(a +b) x c = (a x c) + (b x c) and a x (b+c) = (a x b) + (a x c) . 

(2) The ring R is commutative if multiplication is commutative. 
(3) The ring R is said to have an identity (or contain a 1 )  if there is an element 

1 E R with 
l x a = a x l = a for all a E R.  

We shall usually write simply ab rather than a x b for a, b E R. The additive 
identity of R will always be denoted by 0 and the additive inverse of the ring element 
a will be denoted by -a. 

The condition that R be a group under addition is a fairly natural one, but it may 
seem artificial to require that this group be abelian. One motivation for this is that if the 
ring R has a 1 ,  the commutativity under addition is forced by the distributive laws. To 
see this, compute the product ( 1  + 1 ) (a +b) in two different ways, using the distributive 
laws (but not assuming that addition is commutative). One obtains 

( 1  + l ) (a + b) =  l (a + b) + l (a + b) =  la + lb + 1a + lb = a +  b + a +  b 

and 

( 1  + 1 ) (a + b) =  ( 1  + l)a + ( 1  + l )b = la + la + lb + lb = a +  a +  b + b. 

Since R is a group under addition, this implies b +a  = a +  b, i.e., that R under addition 
is necessarily commutative. 

Fields are one of the most important examples of rings. Note that their definition 
below is just another formulation of the one given in Section 1 .4. 
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Definition. A ring R with identity 1 ,  where 1 ::j:. 0, is called a division ring (or skew 
field) if every nonzero element a E R has a multiplicative inverse, i.e. ,  there exists 
b E R such that ab = ba = 1 .  A commutative division ring is called afield. 

More examples of rings follow. 

Examples 

(1) The simplest examples of rings are the trivial rings obtained by taking R to be any 
commutative group (denoting the group operation by +) and defining the multiplication 
x on R by a x b = 0 for all a, b E R. It is easy to see that this multiplication defines 
a commutative ring. In particular, if R = {0} is the trivial group, the resulting ring R 
is called the zero ring, denoted R = 0. Except for the zero ring, a trivial ring does 
not contain an identity (R = 0 is the only ring where 1 = 0; we shall often exclude 
this ring by imposing the condition 1 =I= 0). Although trivial rings have two binary 
operations, multiplication adds no new structure to the additive group and the theory of 
rings gives no information which could not already be obtained from (abelian) group 
theory. 

(2) The ring of integers, Z, under the usual operations of addition and multiplication is a 
commutative ring with identity (the integer 1 ). The ring axioms (as with the additive 
group axioms) follow from the basic axioms for the system of natural numbers. Note 
that under multiplication Z-{0} is not a group (in fact, there are very few multiplicative 
inverses to elements in this ring). We shall come back to the question of these inverses 
shortly. 

(3) Similarly, the rational numbers, Q, the real numbers, lR, and the complex numbers, C, 
are commutative rings with identity (in fact they are fields). The ring axioms for each 
of these follow ultimately from the ring axioms for Z. We shall verify this when we 
construct Q from Z (Section 7.5) and C from lR (Example 1 ,  Section 1 3. 1 ); both of 
these constructions will be special cases of more general processes. The construction 
of lR from Q (and subsequent verification of the ring axioms) is carried out in basic 
analysis texts. 

( 4) The quotient group Z/ nZ is a commutative ring with identity (the element 1) under the 
operations of addition and multiplication of residue classes (frequently referred to as 
"modular arithmetic"). We saw that the additive abelian group axioms followed from 
the general principles of the theory of quotient groups (indeed this was the prototypical 
quotient group). We shall shortly prove that the remaining ring axioms (in particular, 
the fact that multiplication of residue classes is well defined) follow analogously from 
the general theory of quotient rings. 

In all of the examples so far the rings have been commutative. Historically, one of the first 
noncommutative rings was discovered in 1 843 by Sir William Rowan Hamilton (1 805-
1 865). This ring, which is a division ring, was extremely influential in the subsequent 
development of mathematics and it continues to play an important role in certain areas of 
mathematics and physics. 
(5) (The (real) Hamilton Quaternions) Let !HI be the collection of elements of the form 

a + bi + cj + dk where a,  b, c, d E lR are real numbers (loosely, "polynomials in 
1 ,  i ,  j, k with real coefficients") where addition is defined "componentwise" by 
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(a+bi+cj+dk) + (a' +b' i+c' j+d'k) = (a+a') + (b+b')i + (c+c')j + (d+d')k 

and multiplication is defined by expanding (a + bi + cj + dk) (a' + b'i + c' j + d'k) 
using the distributive law (being careful about the order of terms) and simplifying 
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using the relations 

(where the real number coefficients commute with i, j and k). For example, 

( 1+i+2j) (j+k) = 1 (j+k) + i (j+k) + 2j (j+k) = j + k + ij + ik + 2j2 + 2jk 
= j + k  + k  + (-j) + 2(- 1 )  + 2(i) = -2 + 2i + 2k. 

The fact that lHI is a ring may be proved by a straightforward, albeit lengthy, check 
of the axioms (associativity of multiplication is particularly tedious). The Hamilton 
Quatemions are a noncommutative ring with identity ( 1 = 1 +Oi +0 j +Ok ) . Similarly, 
one can define the ring of rational Hamilton Quatemions by taking a ,  h, c, d to be 
rational numbers above. Both the real and rational Hamilton Quaternions are division 
rings, where inverses of nonzero elements are given by 

. . -1  a - hi - cj - dk 
(a + h1 + CJ + dk) = 2 2 2 2 . a + h + c + d 

(6) One important class of rings is obtained by considering rings of functions. Let X 
be any nonempty set and let A be any ring. The collection, R, of all (set) functions 
f : X � A is a ring under the usual definition of pointwise addition and multiplication 
of functions : (f + g) (x) = f(x) + g(x) and (fg)(x) = f(x)g(x) . Each ring axiom 
for R follows directly from the corresponding axiom for A. The ring R is commutative 
if and only if A is commutative and R has a 1 if and only if A has a 1 (in which case 
the 1 of R is necessarily the constant function 1 on X). 

If X and A have more structure, we may form other rings of functions which 
respect those structures. For instance, if A is the ring of real numbers lR and X is 
the closed interval [0, 1] in lR we may form the ring of all continuous functions from 
[0, 1]  to lR (here we need basic limit theorems to guarantee that sums and products of 
continuous functions are continuous) - this is a commutative ring with 1 .  

(7) An example of a ring which does not have an identity i s  the ring 2Z of even integers 
under usual addition and multiplication of integers (the sum and product of even 
integers is an even integer). 

Another example which arises naturally in analysis is constructed as follows. A 
function f : lR � lR is said to have compact support if there are real numbers a ,  h 
(depending on f) such that f(x) = 0 for all x ¢ [a , h] (i.e., f is zero outside some 
bounded interval). The set of all functions f : lR � lR with compact support is a 
commutative ring without identity (since an identity could not have compact support). 
Similarly, the set of all continuous functions f : lR � lR with compact support is a 
commutative ring without identity. 

In the next section we give three important ways of constructing "larger" rings 
from a given ring (analogous to Example 6 above) and thus greatly expand our list 
of examples. Before doing so we mention some basic properties of arbitrary rings. 
The ring Z is a good example to keep in mind, although this ring has a good deal 
more algebraic structure than a general ring (for example, it is commutative and has 
an identity). Nonetheless, its basic arithmetic holds for general rings as the following 
result shows. 
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Proposition 1. Let R be a ring. Then 
(1) 0a = a0 = 0 for all a E R . 
(2) (-a)b = a(-b) = - (ab) for all a, b E  R (recall -a is the additive inverse of 

a). 
(3) (-a) ( -b) = ab for all a ,  b E R. 
(4) if R has an identity 1, then the identity is unique and -a = ( - 1 )a . 

Proof" These all follow from the distributive laws and cancellation in the additive 
group R .  For example, ( 1 )  follows from Oa = (0 + O)a = Oa + Oa. The equality 
( -a)b = - (ab) in (2) follows from ab + ( -a)b = (a + ( -a))b = Ob = 0. The rest 
follow similarly and are left to the reader. 

This proposition shows that because of the distributive laws the additive and mul
tiplicative structures of a ring behave well with respect to one another, just as in the 
familiar example of the integers. 

Unlike the integers, however, general rings may possess many elements that have 
multiplicative inverses or may have nonzero elements a and b whose product is zero. 
These two properties of elements, which relate to the multiplicative structure of a ring, 
are given special names. 

Definition. Let R be a ring. 
(1) A nonzero element a of R is called a zero divisor if there is a nonzero element 

b in R such that either ab = 0 or ba = 0. 
(2) Assume R has an identity 1 =1- 0. An element u of R is called a unit in R if there 

is some v in R such that uv = vu = 1 .  The set of units in R is denoted R x .  

It is easy to see that the units in a ring R form a group under multiplication so R x 
will be referred to as the group of units of R .  In this terminology afield is a commutative 
ring F with identity 1 =1- 0 in which every nonzero element is a unit, i. e., F x  = F - {0} . 

Observe that a zero divisor can never be a unit. Suppose for example that a is a 
unit in R and that ab = 0 for some nonzero b in R .  Then va = 1 for some v E R, so 
b = 1b = (va)b = v (ab) = vO = 0, a contradiction. Similarly, if ba = 0 for some 
nonzero b then a cannot be a unit. 

This shows in particular that fields contain no zero divisors. 

Examples 

(1) The ring Z of integers has no zero divisors and its only units are ±1,  i.e., zx = {±1} .  
Note that every nonzero integer has an inverse in  the larger ring Q, so the property of 
being a unit depends on the ring in which an element is viewed. 

(2) Let n be an integer 2: 2. In the ring Z/ nZ the elements u for which u and n are 
relatively prime are units (we shall prove this in the next chapter). Thus our use ofthe 
notation (Z/ nZ) x is consistent with the definition of the group of units in an arbitrary 
ring. 

226 

If, on the other hand, a is a nonzero integer and a is not relatively prime to n then 
we show that ii is a zero divisor in Z/ nZ. To see this let d be the g.c.d. of a and n and 

n . 
let b = d .  By assumptiOn d > 1 so 0 < b < n, i.e., jj i= 0. But by construction n 
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divides ab, that is, ab = 6 in Z/nZ. This shows that every nonzero element ofZfnZ 
is either a unit or a zero divisor. Furthermore, every nonzero element is a unit if and 
only if every integer a in the range 0 < a < n is relatively prime to n. This happens 
if and only if n is a prime, i.e., Z/ nZ is a field if and only if n is a prime. 

(3) If R is the ring of all functions from the closed interval [0, 1] to lR then the units of R 
are the functions that are not zero at any point (for such f its inverse is the function J ). If f is not a unit and not zero then f is a zero divisor because if we define 

{ 0, if f(x) # 0 
g (x) = 

1 ,  if f (x) = 0 

then g is not the zero function but f(x)g(x) = 0 for all x. 
(4) If R is the ring of all continuous functions from the closed interval [0, 1 ]  to lR then 

the units of R are still the functions that are not zero at any point, but now there are 
functions that are neither units nor zero divisors. For instance, f (x) = x - ! has only 
one zero (at x = ! > so f is not a unit. On the other hand, if gf = 0 then g must 
be zero for all x # ! , and the only continuous function with this property is the zero 
function. Hence f is neither a unit nor a zero divisor. Similarly, no function with 
only a finite (or countable) number of zeros on [0, 1] is a zero divisor. This ring also 
contains many zero divisors. For instance let 

{ 0, 
f(x) = 

x _ l  2 '  

O :s x ::: ! 
� :S x :S l  

and let g(x) = f(l - x). Then f and g are nonzero continuous functions whose 
product is the zero function. 

(5) Let D be a rational number that is not a perfect square in <Q and define 

<Q(-JD) = {a +  b-JD I a ,  b E  <Q} 

as a subset of <C. This set is clearly closed under subtraction, and the identity (a + 
b-JD ) (c + d,JD) = (ac + bdD) + (ad + bc),JD shows that it is also closed under 
multiplication. Hence <Q( -JD) is a subring of <C (even a subring of lR if D > 0), so in 
particular is a commutative ring with identity. It is easy to show that the assumption 
that D is not a square implies that every element of <Q( ,JD) may be written uniquely 
in the form a + b-JD. This assumption also implies that if a and b are not both 0 then 
a2 - Db2 is nonzero, and since (a + b-JD ) (a - b,JD) = a2 - Db2 it follows that if 

� · · h 
a - b.Ji5 · h · f b � a + bv v # O (t.e., one ofa or b ts nonzero) t en 2 b2 1s t e mverse o a +  v D a - D 

in <Q( rv ) .  This shows that every nonzero element in this commutative ring is a unit, 
i.e., <Q(,JD) is a field (called a quadratic field, cf. Section 13 .2). 

The rational number D may be written D = !2 D' for some rational number f and 
a unique integer D' where D' is not divisible by the square of any integer greater than 
1 , i.e., D' is either - 1  or ±1 times the product of distinct primes in Z (for example, 
8/5 = (2/5)2 · 10). Call D' the squarefree part of D. Then -JD = Jffi, and so 
<Q( -JD) = <Q( ffi). Thus there is no loss in assuming that D is a squarefree integer 
(i.e., f = 1 )  in the definition of the quadratic field <Q( rv ). 
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Rings having some of the same characteristics as the integers Z are given a name: 

Definition. A commutative ring with identity 1 =f:. 0 is called an integral domain if it 
has no zero divisors. 

The absence of zero divisors in integral domains give these rings a cancellation 
property: 

Proposition 2. Assume a, b and c are elements of any ring with a not a zero divisor. If 
ab = ac, then either a = 0 or b = c (i.e., if a =f:. 0 we can cancel the a 's). In particular, 
if a, b, c are any elements in an integral domain and ab = ac, then either a = 0 or 
b = c. 

Proof: If ab = ac then a (b - c) = 0 so either a = 0 or b - c = 0. The second 
statement follows from the first and the definition of an integral domain. 

Corollary 3. Any finite integral domain is a field. 

Proof: Let R be a finite integral domain and let a be a nonzero element of R. By 
the cancellation law the map x � ax is an injective function. Since R is finite this map 
is also surjective. In particular, there is some b E R such that ab = 1 ,  i.e., a is a unit 
in R. Since a was an arbitrary nonzero element, R is a field. 

A remarkable result of Wedderburn is that a finite division ring is necessarily com
mutative, i.e., is a field. A proof of this theorem is outlined in the exercises at the end 
of Section 1 3.6. 

In Section 5 we study the relation between zero divisors and units in greater detail. 
We shall see that every nonzero element of a commutative ring that is not a zero divisor 
has a multiplicative inverse in some larger ring. This gives another perspective on the 
cancellation law in Proposition 2. 

Having defined the notion of a ring, there is a natural notion of a subring. 

Definition. A subring of the ring R is a subgroup of R that is closed under multipli
cation. 

In other words, a subset S of a ring R is a subring if the operations of addition and 
multiplication in R when restricted to S give S the structure of a ring. To show that a 
subset of a ring R is a subring it suffices to check that it is nonempty and closed under 
subtraction and under multiplication. 

Examples 

A number of the examples above were also subrings. 
(1) Z is a subring of Q and Q is a subring of R The property "is a subring of' is clearly 

transitive. 
(2) 2Z is a subring of Z, as is nil for any integer n. The ring ZjnZ is not a subring (or a 

subgroup) of Z for any n ;:: 2. 
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(3) The ring of all continuous functions from lR to lR is a subring of the ring of all functions 
from lR to JR. The ring of all differentiable functions from lR to lR is a subring of both 
of these. 

(4) S = Z + /Zi + /Zj + Ilk, the integral Quatemions, form a subring of either the real or 
the rational Quatemions - it is easy to check that multiplying two such quatemions 
together gives another quatemion with integer coefficients. This ring (which is not a 
division ring) can be used to give proofs for a number of results in number theory. 

(5} If R is a subring of a field F that contains the identity of F then R is an integral 
domain. The converse of this is also true, namely any integral domain is contained in 
a field (cf. Section 5). 

Example: (Quadratic Integer Rings) 

Let D be a squarefree integer. It is immediate from the addition and multiplication that the 

subset Z[ -v'n ] = {a + b-v'n I a, b E Z} forms a subring of the quadratic field Q( -v'n) 
defined earlier. If D = 1 mod 4 then the slightly larger subset 

1 + -v'n 1 + -v'n 
Z[ 

2 
] = {a + b 

2 
I a, b E Z} 

is also a subring: closure under addition is immediate and (a + b l+jD ) (c + d l+:jD) = 

(ac + bd D4l ) + (ad + be + bd) 1 +jD together with the congruence on D shows closure 
under multiplication. 

Define 

where 

0 = OIQI(.J]) ) = Z[w] = {a +  bw I a, b E  Z} ,  

I -v'n, 
w =  1 + -vfn 

2 ' 

if D = 2, 3 mod 4 

if D = 1 mod 4, 

called the ring of integers in the quadratic field Q( Ji5 ) . The terminology comes from the 

fact that the elements of the subring 0 of the field Q( -v'n) have many properties analogous 
to those of the subring of integers Z in the field of rational numbers Q (and are the integral 
closure of Z in Q( -v'n ) as explained in Section 15.3) . 

In the special case when D = -1 we obtain the ring Z[i] of Gaussian integers, which 
are the complex numbers a +  bi E C with a and b both integers. These numbers were 
originally introduced by Gauss around 1 800 in order to state the biquadratic reciprocity law 
which deals with the beautiful relations that exist among fourth powers modulo primes. 
We shall shortly see another useful application of the algebraic structure of this ring to 
number theoretic questions. 

Define the field norm N : Q( -v'n) � Q by 

N(a + b..[jj ) = (a +  hJi5 ) (a - bJi5 ) = a2 - Db2 E Q, 

which, as previously mentioned, is nonzero if a + b-vfn =1- 0. This norm gives a measure 
of "size" in the field Q( -v'n ). For instance when D = - 1  the norm of a + bi is a2 + b2, 
which is the square of the length of this complex number considered as a vector in the 
complex plane. We shall use the field norm in this and subsequent examples to establish 
many properties of the rings 0. 
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It is easy to check that N is multiplicative, i.e., that N(a{J) = N(a)N({J) for all 
a, fJ E Q( .Ji5). On the subring 0 it is also easy to see that the field norm is given by 

{ a2 - Db2 , if D = 2, 3 mod 4 
N(a + bw) = (a + bw) (a + bw) = 2 b 

1 - D
b2 t'f D = 1 mod 4 a + a  + -4- , 

where I -.Ji5, if D = 2, 3 mod 4 

(ij = 1 -.Ji5 
2 . 

if D = 1 mod 4. 

It follows that N (a) is in fact an integer for every a E 0. 
We may use this norm to characterize the units in 0. If a E 0 has field norm 

N(a) = ± 1 ,  the previous formula shows that (a + bw)-1 = ±(a + bw),  which is again 
an element of 0 and so a is a unit in 0. Suppose conversely that a is a unit in 0, say 
a{J = 1 for some fJ E 0. Then the multiplicative property of the field norm implies that 
N(a)N({J) = N(a{J) = N(l) = 1 . Since both N(a) and N(fJ) are integers, each must be 
±1 . Hence, 

the element a is a unit in 0 if and only if N(a) = ± 1 .  

In particular the determination of the integer solutions to the equation x2 - Dy2 = ±1 
(called Pell's equation in  elementary number theory) i s  essentially equivalent to the deter
mination of the units in the ring 0. 

When D = - 1 , the units in the Gaussian integers Z[i] are the elements a +  bi with 
a2 + b2 = ±1,  a, b E  Z, so the group of units consists of {±1 ,  ±i } . When D = -3, the 
units in Z[( l + H)/2] are determined by the integers a, b with a2 + ab + b2 = ± 1 ,  i.e., 
with (2a + b)2 + 3b2 = ±4, from which it is easy to see that the group of units is a group 
of order 6 given by {±1 , ±p , ±p2} where p = (- 1 + H)/2. For any other D < 0 it is 
similarly straightforward to see that the only units are {±1 }. 

By contrast, when D > 0 it can be shown that the group of units ox is always infinite. 
For example, it is easy to check that 1 + .J2 is a unit in the ring 0 = Z[.J2 ] (with field 
norm - 1 )  and that {±(1 + .J2 )n I n E Z}, is an infinite set of distinct units (in fact the full 
group of units in this case, but this is harder to prove). 

E X E R C I S E S  

Let R be a ring with 1 .  

1 .  Show that ( - 1 )2 = 1 in R. 

2.  Prove that if  u is a unit in R then so is -u. 
3. Let R be a ring with identity and let S be a subring of R containing the identity. Prove that 

if u is a unit in S then u is a unit in R. Show by example that the converse is false. 

4. Prove that the intersection of any nonempty collection of subrings of a ring is also a subring. 

5. Decide which of the following (a) - (f) are subrings of Q: 
(a) the set of all rational numbers with odd denominators (when written in lowest terms) 
(b) the set of all rational numbers with even denominators (when written in lowest terms) 
(c) the set of nonnegative rational numbers 
(d) the set of squares of rational numbers 
(e) the set of all rational numbers with odd numerators (when written in lowest terms) 

230 Chap. 7 I ntroduction to Rings 



(f) the set of all rational numbers with even numerators (when written in lowest terms). 
6. Decide which of the following are subrings of the ring of all functions from the closed 

interval [0, 1] to JR: 
(a) the set of all functions f(x) such that f(q) = 0 for all q E Q n [0, l ]  
(b) the set of all polynomial functions 
(c) the set of all functions which have only a finite number of zeros, together with the 

zero function 
(d) the set of all functions which have an infinite number of zeros 
(e) the set of all functions f such that lim f (x) = 0 

X-+ 1-
(f) the set of all rational linear combinations of the functions sinnx and cosmx, where 

m, n E {0 , 1 ,  2, . . . } . 
7. The center of a ring R is {z E R 1 zr = rz for all r E R } (i.e., is the set of all elements 

which commute with every element of R). Prove that the center of a ring is a subring that 
contains the identity. Prove that the center of a division ring is a field. 

8. Describe the center of the real Hamilton Quatemions IHI. Prove that {a + bi I a, b E JR.} is 
a subring of IHI which is a field but is not contained in the center of IHI. 

9. For a fixed element a E R define C(a) = {r E R I ra =  ar } .  Prove that C{a) is a subring 
of R containing a. Prove that the center of R is the intersection of the subrings C(a) over 
all a E R. 

10. Prove that if D is a division ring then C{a) is a division ring for all a E D  (cf. the preceding 
exercise). 

11. Prove that if R is an integral domain and x2 = 1 for some x E R then x = ± 1 .  
12. Prove that any subring of a field which contains the identity i s  an integral domain. 
13. An element X in R is called nilpotent if xm = 0 for some m E z+. 

(a) Show that if n = akb for some integers a and b then ab is a nilpotent element of 
ZjnZ. 

(b) If a E Z is an integer, show that the element a E ZjnZ is nilpotent if and only if 
every prime divisor of n is also a divisor of a. In particular, determine the nilpotent 
elements of Z/72Z explicitly. 

(c) Let R be the ring of functions from a nonempty set X to a field F. Prove that R 
contains no nonzero nilpotent elements. 

14. Let x be a nilpotent element of the commutative ring R (cf. the preceding exercise). 
(a) Prove that x is either zero or a zero divisor. 
(b) Prove that r x is nilpotent for all r E R. 
(c) Prove that 1 + x is a unit in R. 
(d) Deduce that the sum of a nilpotent element and a unit is a unit. 

15. A ring R is called a Boolean ring if a2 = a  for all a E R. Prove that every Boolean ring 
is commutative. 

16. Prove that the only Boolean ring that is an integral domain is Z/2Z. 
17. Let R and S be rings. Prove that the direct product R x S is a ring under componentwise 

addition and multiplication. Prove that R x S is commutative if and only if both R and 
S are commutative. Prove that R x S has an identity if and only if both R and S have 
identities. 

18. Prove that { (r, r) I r E  R} is a subring of R x R. 
19. Let I be any nonempty index set and let R; be a ring for each i E / .  Prove that the direct 
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product niE/ R; is a ring under componentwise addition and multiplication. 

20. Let R be the collection of sequences (at , az , a3 , . . . ) of integers a1 , az , a3 , . . .  where all 
but finitely many of the a; are 0 (called the direct sum of infinitely many copies of Z). 
Prove that R is a ring under componentwise addition and multiplication which does not 
have an identity. 

21. Let X be any nonempty set and let P(X) be the set of all subsets of X (the power set of 
X). Define addition and multiplication on P(X) by 

A + B = (A - B) U (B - A) and A x B = A n B  

i.e., addition is symmetric difference and multiplication is intersection. 
(a) Prove that P (X) is a ring under these operations (P(X) and its subrings are often 

referred to as rings of sets). 
(b) Prove that this ring is commutative, has an identity and is a Boolean ring. 

22. Give an example of an infinite Boolean ring. 

23. Let D be a squarefree integer, and let () be the ring of integers in the quadratic field Q( .J/5) .  
For any positive integer f prove that the set Ot = Z[fw] = {a + hfw I a ,  h E Z }  i s  a 
subring of 0 containing the identity. Prove that [0 : 01] = f (index as additive abelian 
groups). Prove conversely that a subring of () containing the identity and having finite 
index f in 0 (as additive abelian group) is equal to Ot . (The ring Of is called the order 

of conductor f in the field Q( .J/5 ) .  The ring of integers () is called the maximal order in 
Q(.J/5).) 

24. Show for D = 3, 5, 6, and 7 that the group of units () x of the quadratic integer ring () is 
infinite by exhibiting an explicit unit of infinite (multiplicative) order in each ring. 

25. Let I be the ring of integral Hamilton Quatemions and define 

N : l -+ Z by N(a + hi + cj + dk) = a2 + h2 + c2 + d2 

(the map N is called a norm). 
(a) Prove that N(a) = aa for all a E /, where if a a + hi + cj + dk then 

Ci = a  - hi - cj - dk. 
(b) Prove that N (af3) = N (a)N(f3) for all a, f3 E l . 
(c) Prove that an element of l is a unit if and only if it has norm + 1 .  Show that [ X is 

isomorphic to the quatemion group of order 8. [The inverse in the ring of rational 

quatemions of a nonzero element a is Ci • ] 
N (a) 

26. Let K be a field. A discrete valuation on K is a function v : K x -+ Z satisfying 
(i) v (ah) = v(a) + v (h) (i.e., v is a homomorphism from the multiplicative group of 

nonzero elements of K to Z), 
(ii) v is surjective, and 
(iii) v (x + y) ::: rnin{v (x) ,  v (y)} for all x ,  y E K x  with x + y # 0. 

The set R = {x E K x I v (x) ::: 0} U {0) is called the valuation ring of v .  
(a) Prove that R i s  a subring of K which contains the identity. (In general, a ring R is 

called a discrete valuation ring if there is some field K and some discrete valuation v 
on K such that R is the valuation ring of v.) 

(b) Prove that for each nonzero element x E K either x or x- 1 is in R.  
(c) Prove that an element x is a unit of R if and only if  v(x) = 0. 

27. A specific example of a discrete valuation ring (cf. the preceding exercise) is obtained 
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when p is a prime, K = Q and 

by 
a c 

where - = pa -
b d ' p Jc and p )'d. 

Prove that the corresponding valuation ring R is the ring of all rational numbers whose 
denominators are relatively prime to p. Describe the units of this valuation ring. 

28. Let R be a ring with 1 =f. 0. A nonzero element a is called a left zero divisor in R if there is 
a nonzero element x E R such that ax = 0. Symmetrically, b =f. 0 is a right zero divisor if 
there is a nonzero y E R such that yb = 0 (so a zero divisor is an element which is either 
a left or a right zero divisor). An element u E R has a left inverse in R if there is some 
s E R such that su = 1 .  Symmetrically, v has a right inverse if vt = 1 for some t E R. 
(a) Prove that u is a unit if and only if it has both a right and a left inverse (i.e., u must 

have a two-sided inverse). 
(b) Prove that if u has a right inverse then u is not a right zero divisor. 
(c) Prove that if u has more than one right inverse then u is a left zero divisor. 
(d) Prove that if R is a finite ring then every element that has a right inverse is a unit (i.e., 

has a two-sided inverse). 
29. Let A be any commutative ring with identity 1 =I= 0. Let R be the set of all group homo

morphisms of the additive group A to itself with addition defined as pointwise addition of 
functions and multiplication defined as function composition. Prove that these operations 
make R into a ring with identity. Prove that the units of R are the group automorphisms 
of A (cf. Exercise 20, Section 1 .6). 

30. Let A = Z x Z x Z x · · · be the direct product of copies of Z indexed by the positive integers 
(so A is a ring under componentwise addition and multiplication) and let R be the ring of 
all group homomorphisms from A to itself as described in the preceding exercise. Let qJ 
be the element of R defined by qJ(at , a2 , a3 , . . . ) = (a2 , a3 , . . . ). Let 1/f be the element of 
R defined by 1/f(at , a2 , a3 ,  . . . ) = (0, a1 ,  a2 , a3 , . . . ) . 
(a) Prove that ({Jl/f is the identity of R but 1/f({J is not the identity of R (i.e., 1/f is a right 

inverse for ({J but not a left inverse). 
(b) Exhibit infinitely many right inverses for qJ. 
(c) Find a nonzero element rr in R such that qJrr = 0 but rrqJ =f. 0. 
(d) Prove that there is no nonzero element ). E R such that A({J = 0 (i.e., qJ is a left zero 

divisor but not a right zero divisor). 

7.2 EXAMPLES: POLYNOMIAL RINGS, MATRIX RINGS, 
AN D GROUP RINGS 

We introduce here three important types of rings: polynomial rings, matrix rings, and 
group rings. We shall see in the course of the text that these three classes of rings are 
often related. For example, we shall see in Part VI that the group ring of a group G over 
the complex numbers (C is a direct product of matrix rings over C. 

These rings also have many important applications, in addition to being interesting 
in their own right. In Part Ill we shall use polynomial rings to prove some classification 
theorems for matrices which, in particular, determine when a · matrix is similar to a 
diagonal matrix. In Part VI we shall use group rings to study group actions and to prove 
some additional important classification theorems. 
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Polynomial  Rings 

Fix a commutative ring R with identity. We define the ring of polynomials in a form 
which may already be familiar, at least for polynomials with real coefficients. A defi
nition in terms of Cartesian products is given in Appendix I. Let x be an indeterminate. 
The formal sum 

with n ::: 0 and each a; E R is called a polynomial in x with coefficients a; in R. 
I f  an =J:. 0,  then the polynomial i s  said to  be of degree n, anxn is called the leading 
term, and an is called the leading coefficient (where the leading coefficient of the zero 
polynomial is taken to be 0). The polynomial is monic if an = 1 .  The set of all such 
polynomials is called the ring of polynomials in the variable x with coefficients in R 
and will be denoted R[x]. 

The operations of addition and multiplication which make R[x] into a ring are the 
same operations familiar from elementary algebra: addition is "componentwise" 

(anXn + an-lX
n-l + · · · + a1X + {lo) + (bnXn + bn-tXn-l + · · · + b1X + bo) 

= (an + bn)Xn + (an- 1 + bn-l )Xn-l + · · · + (al + b1 )x + (ao + bo) 
(here an or bn may be zero in order for addition of polynomials of different degrees 
to be defined). Multiplication is performed by first defining (axi) (bxi ) = abxi+i for 
polynomials with only one nonzero term and then extending to all polynomials by the 
distributive laws (usually referred to as "expanding out and collecting like terms"): 

(ao + a1x + a2x2 + . . .  ) x (bo + b1x + b2x2 + . . . ) 
= aobo + (aobl + a1bo)x + (aob2 + a1b1 + a2bo)x2 + . . .  

(in general, the coefficient of xk in the product will be L;=O a;bk-i ). These operations 
make sense since R is a ring so the sums and products of the coefficients are defined. 
An easy verification proves that R[x] is indeed a ring with these definitions of addition 
and multiplication. 

The ring R appears in R[x] as the constant polynomials. Note that by definition of 
the multiplication, R[x] is a commutative ring with identity (the identity 1 from R). 

The coefficient ring R above was assumed to be a commutative ring since that is the 
situation we shall be primarily interested in, but note that the definition of the addition 
and multiplication in R[x] above would be valid even if R were not commutative or 
did not have an identity. If the coefficient ring R is the integers Z (respectively, the 
rationals Q) the polynomial ring Z[x] (respectively, Q[x] ) is the ring of polynomials 
with integer (rational) coefficients familiar from elementary algebra. 

Another example is the polynomial ring Zj3/Z[x] of polynomials in x with coeffi
cients in Z/3/Z. This ring consists of nonnegative powers of x with coefficients 0, 1 ,  
and 2 with calculations on the coefficients performed modulo 3 . For example, if 

then 

234 

p(x) = x2 + 2x + 1 and q (x) = x3 + x  + 2  

p(x) + q (x) = x3 + x2 

Chap. 7 I ntroduction to Rings 



and 
p(x)q (x) = x5 + 2x4 

+ 2x3 + x2 + 2x + 2. 
The ring in which the coefficients are taken makes a substantial difference in the 

behavior of polynomials. For example, the polynomial x2 + I is not a perfect square in 
the polynomial ring Z[x ] , but is a perfect square in the polynomial ring Z/2Z[x ] , since 
(x + 1 )2 = x2 + 2x + 1 = x2 + 1 in this ring. 

Proposition 4. Let R be an integral domain and let p(x), q (x) be nonzero elements of 
R[x]. Then 

(1) degree p(x)q (x) = degree p(x) + degree q (x), 
(2) the units of R[x] are just the units of R, 
(3) R[x] is an integral domain. 

Proof: If R has no zero divisors then neither does R[x]; if p(x) and q (x) are 
polynomials with leading terms anxn and bmxm , respectively, then the leading term of 
p(x)q (x) is anbmxn+m , and anbm I 0. This proves (3) and also verifies ( 1 ) .  If p(x) is 
a unit, say p(x)q (x) = 1 in R[x], then degree p(x) + degree q(x) = 0, so both p(x) 
and q (x) are elements of R, hence are units in R since their product is  I .  This proves 
(2) . 

If the ring R has zero divisors then so does R[x], because R C R[x]. Also, if f(x) 
is a zero divisor in R[x] (i.e., f(x)g(x) = 0 for some nonzero g(x) E R[x]) then in 
fact cf(x) = 0 for some nonzero c E R (cf. Exercise 2). 

If S is a subring of R then S[x] is a subring of R[x] .  For instance, Z[x] is a subring 
of Q[x ] .  Some other examples of subrings of R[x] are the set of all polynomials in x2 
(i.e., in which only even powers of x appear) and the set of all polynomials with zero 
constant term (the latter subring does not have an identity). 

Polynomial rings, particularly those over fields, will be studied extensively in Chap
ter 9. 

Matrix Rings 

Fix an arbitrary ring R and let n be a positive integer. Let Mn (R) be the set of all n x n 
matrices with entries from R. The element (aiJ )  of Mn (R) is an n x n square array 
of elements of R whose entry in row i and column j is aij E R. The set of matrices 
becomes a ring under the usual rules by which matrices of real numbers are added and 
multiplied. Addition is componentwise: the i, j entry of the matrix (aiJ ) + (bij ) is 
aij + bij · The i, j entry of the matrix product (aiJ ) x (bij ) is :LZ=t a;khi (note that 
these matrices need to be square in order that multiplication of any two elements be 
defined). It is a straightforward calculation to check that these operations make Mn (R) 
into a ring. When R is a field we shall prove that Mn (R) is a ring by less computational 
means in Part III. 

Note that if R is any nontrivial ring (even a commutative one) and n ::: 2 then 
Mn (R) is not commutative: if ab I 0 in R let A be the matrix with a in position 1 , 1  
and zeros elsewhere and let B be the matrix with b in position 1 ,2 and zeros elsewhere; 
then ab is the (nonzero) entry in position 1 ,2 of AB whereas BA is the zero matrix. 
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These two matrices also show that Mn ( R) has zero divisors for all nonzero rings R 
whenever n ::: 2. 

An element (aij ) of Mn (R) is called a scalar matrix if for some a E R, a;; = a  
for all i E { 1 , . . . , n }  and aij = 0 for all i =f. j (i.e., all diagonal entries equal a and 
all off-diagonal entries are 0). The set of scalar matrices is a subring of Mn (R) . This 
subring is a copy of R (i.e., is "isomorphic" to R): if the matrix A has the element a 
along the main diagonal and the matrix B has the element b along the main diagonal 
then the matrix A + B has a + b along the diagonal and AB has ab along the diagonal 
(and all other entries 0). If R is commutative, the scalar matrices commute with all 
elements of Mn (R) . If R has a 1, then the scalar matrix with l 's down the diagonal 
(the n x n identity matrix) is the 1 of Mn (R). In this case the units in Mn (R) are the 
invertible n x n matrices and the group of units is denoted G Ln ( R), the general linear 
group of degree n over R. 

If S is a subring of R then M11 (S) is a subring of Mn (R) . For instance M" (Z) is a sub
ring of Mn (Q) and Mn (2Z) is a subring of both of these. Another example of a subring 
of Mn (R) is the set of upper triangular matrices: { (aij )  I apq = 0 whenever p > q}  
(the set of matrices all  of whose entries below the main diagonal are zero) - one easily 
checks that the sum and product of upper triangular matrices is upper triangular. 

Group Rings 

Fix a commutative ring R with identity 1 =/:. 0 and let G = {g1 , g2 , . . .  , g" } be any finite 
group with group operation written multiplicatively. Define the group ring, RG, of G 
with coefficients in R to be the set of all formal sums 

a; E R,  1 :::;: i :::;: n .  

If g1 i s  the identity of G we shall write a1 g1 simply as a1 . Similarly, we shall write the 
element l g for g E G simply as g. 

Addition is defined "componentwise" 

(aJgJ + a2g2 + · · · + a"gn ) + (bJgJ + �g2 + · · · + bngn) 
= (a1 + bJ )gJ + (a2 + b2)g2 + · · · + (an +  b" )g" . 

Multiplication is performed by first defining (ag; )(bgj) = (ab )gk . where the product 
ab is taken in R and g;gj = gk is the product in the group G. This product is then 
extended to all formal sums by the distributive laws so that the coefficient of gk in the 
product (a1g1 + · · · +a"g" ) x (b1g1 + · · · +b11g11 ) is Lg,gj=gk a;bj .  It is straightforward 

to check that these operations make RG into a ring (again, commutativity of R is not 
needed). The associativity of multiplication follows from the associativity of the group 
operation in G. The ring RG is commutative if and only if G is a commutative group. 

Example 

Let G = Ds be the dihedral group of order 8 with the usual generators r, s (r4 
= s2 = 1 

and rs = sr- 1 ) and let R = Z. The elements a = r + r2 - 2s and {3 = - 3r2 + rs are 
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